Python数据科学|第一章:数据科学家的武器库

本系列教程为《Python数据科学——技术详解与商业实践》的读书笔记。该书以Python为实现工具,以商业实战为导向,从技术、业务、商业实战3个维度来展开学习。本书共19章(Python环境安装和Python基础语法法本系列教程不做讲解),内容较多,旨在学习和记录。但惶恐自身能力有限,未及原书三分,故征得原书作者同意,才敢动笔。

1.1 数据科学的基本概念

数据科学并不是一门学科,它是为了完成商业或工业上的目标,从数据获取知识,为行动提出建议的方法、技术和流程的最佳实践。
本书提供了数据科学工作者的工作范式图,这里将这个工作范式图简单进行描述:数据通过维度分析转换为信息;信息通过建模分析得到知识;知识结合业务目标以此进行决策和行动。
与数据科学相关的知识设计多个学科和领域,包括统计学、数据挖掘、模式识别、机器学习(人工智能)、数据库等。

1.2 数理统计技术

1.2.1 描述性统计分析

新闻报道中的居民收入情况,并不需要把每个人的收入都念一遍,而是取的均值。描述性统计分析就是从总体数据中提取变量的统计量。在日常的业务分析报告中,常使用该方法完成。在实际中,也就是通过Python进行数据统计,完成统计表和统计图的呈现即可。

1.2.2 统计推断与统计建模

统计推断及统计建模,含义是建议解释变量与被解释变量之间可解释的、稳定的,最好是具有因果关系的表达式(下文会详细介绍)。

1.3 数据挖掘技术和方法

数据挖掘的方法分为描述性和预测性。预测性模型从历史数据中找到规律,并用于预测未来;描述性模型用于直观反映历史状况,为后续的分析提供灵感。
例如:判断客户是否违约,可通过客户的性别、年龄、收入、历史信用状况等因素进行预测。这里就是预测性模型。
通过客户标签对用户细分,以便针对不同客户做不同运营;根据客户的产品购买,发现产品间的相关性,用于捆绑营销。这些就是属于描述性模型。

1.3.1 描述性数据挖掘算法
  • 聚类分析
  • 关联规则分析
1.3.2 预测性数据挖掘算法
  • 决策树
  • KNN算法
  • Logistic回归
  • 神经网络
  • 支持向量机
  • 集成算法
    具体的算法在后文中一一讲解。

总结

第一章主要是起到总的作用,首先介绍了数据科学的概念和流程。接下来针对问题的难易,将数据科学需要用到的技术划分为:数理统计技术和数据挖掘技术。这些技术也就是数据科学家的武器库。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容

  • 理解很多瘦子急切的心情,我也想帮助大家尽快摆脱瘦子的称号,不过需要提醒的是:增肌是个较漫长的过程,而且需要科学的方...
    增肌日记阅读 1,414评论 0 10
  • 小和尚刚下山就丢了盘缠,也罢,钱财身外物,再去化缘就是了。 “施主,可否给小僧一碗茶水?”小和尚满头大汗,身上袈裟...
    闲人慢三阅读 509评论 0 2
  • 幸福不在远方,幸福就在你的身边,在日日生活的地方,要有一颗懂得体验点滴美好的心,才会看到散落在日常当中的幸福。幸福...
    兰漫雪阅读 632评论 0 0
  • 对于烘焙界来说,做的好不如拍的好,多少烘焙大咖都是美图堆出来的。辛辛苦苦做出来的甜点,大家都想好好展现它的美,现在...
    东八区影像阅读 431评论 1 1