函数说明
在计算交叉熵之前,通常要用到softmax层来计算结果的概率分布。因为softmax层并不会改变最终的分类结果(排序),所以,tensorflow将softmax层与交叉熵函数进行封装,形成一个函数方便计算:tf.nn.softmax_cross_entropy_with_logits(logits= , labels=)。
为了加速计算过程,针对只有一个正确答案(例如MNIST识别)的分类问题,tensorflow提供了tf.nn.sparse_softmax_cross_entropy_with_logits(logits= , labels=)。
两个函数的区别
两个函数虽然功能类似,但是其参数labels有明显区别。tf.nn.softmax_cross_entropy_with_logits()中的logits和labels的shape都是[batch_size, num_classes],而tf.nn.sparse_softmax_cross_entropy_with_logits()中的labels是稀疏表示的,是 [0,num_classes)中的一个数值,代表正确分类结果。即sparse_softmax_cross_entropy_with_logits 直接用标签计算交叉熵,而 softmax_cross_entropy_with_logits 是标签的onehot向量参与计算。softmax_cross_entropy_with_logits 的 labels 是 sparse_softmax_cross_entropy_with_logits 的 labels 的一个独热版本(one hot version)。
PS:交叉熵是的log是ln