有哪些AI的事实,没有一定AI基础的人不会相信?[知乎小组第一期]

0 现阶段还处于人工智障阶段 现阶段人工智能,或者叫弱人工智能 其实非常容易上手,只要你把数据倒入keras、tensorflow、sklearn、xgboost等几百个炼丹炉(神经网络),然后搅拌一下,然后输出端等待答案就可以了。 大部分干人工智能的普通程序员,实际上做的是数据清洗和数据挖掘,就是把数据整理成可以倒入keras、tensorflow......的样子。 实际上很多公开数据集,是由薪资非常低的标注员(类似人工打码平台的人肉验证码识别)标注出来的。标注员工作非常类似找茬。

Q:如果答案错了怎么办?
A:调(lian)参(dan)一下,搅拌一下,答案(loss)就会越来越正确了。

1 人工智能学习其实相对人类来说,是非常慢的。只不过人工智能有计算机加持。 一个人要学会开车,需要开多少里程?普通人从完全不会,到能安全上路,一般只需要12节课,每节课1小时。 换成AI:学习上了百万mile,还开不好车。 自动驾驶距离真正上路还有一段距离,取代货车司机这种事情,还没那么快。

2 弱人工智能,是没有认知能力的(迁移学习能力弱) 一个人知道什么是猫:给她一只猫,告诉他这是“猫咪”。下一次,当她见到不管什么颜色的猫,不管它摆出什么姿势,都知道这是“猫咪”。 换成AI:神经网络训练上百万张猫的照片,各种颜色,各种姿势,各种角度。可以识别正常的猫以后,我们丢给神经网络一张这样的照片:

AI:喵喵喵???

AI眼中的猫

3 对于专家智能,比如下棋、翻译,神经网络确实超越人类。但是让神经网络写小说emmmm

4 目前,神经网络的各种模型,可解释性都非常低。 比如,上面那个识别猫的神经网络,要了解是怎么识别猫的,目前真没人能说得清楚。

5 当今的AI,其实并没有比80年代的进步很多。

6 “深度学习”,其实跟人的思维方式、人脑结构、神经系统几乎完全不搭边。 顶多,数学模型上,神经网络的神经元和数学的神经元是类似的。 而我们平时说的“机器学习”,实际上就是《统计学习方法》

7 就算是最常见的自然聊天语意识别模型来说也会有上下文的问题。举例说明:不能真正理解上下文的对话(机票查询):

AI:从哪里出发? 用户:上海虹桥机场。
AI:到哪里? 用户:还是从上海浦东走吧,对了,不要春秋的。
AI:好的,从虹桥出发到浦东的春秋航空的航班是......

8 展望一下未来吧,18年个人认为AI泡沫有点大,仿佛AI是万灵药(前几年是大数据),目前几个靠谱的方向比如无人驾驶,智能医疗,推荐系统,还是很靠谱的。目前智能医疗在诊断疾病(比如乳腺癌诊断,已有论文支持)上已经超越人类了,虽然不能治病,但是大大降低医生工作量和误诊率。虽然现在推荐系统和智障差不多,看了2个美女小视频以后就拼命推荐美女,但是未来应该会变得更智慧更懂用户。

9.“机器学习”是个筐,什么普适算法都往里装。

机器学习的核心思想是创造一种普适的算法,它能从数据中挖掘出有趣的东西,而不需要针对某个问题去写代码。你需要做的只是把数据“投喂”给普适算法,然后它会在数据上建立自己的逻辑。“基于样本数据得出解决具体问题的等式”

回到第0点,比如说有一种算法,叫分类算法,它可以把数据分到不同的组别当中。一个识别动物的分类算法,也可以用作识别手写数字、判断垃圾邮件,只需要调整输入(训练)数据,就可以自动生成不同的分类逻辑。这也是机器学习的价值所在

Datawhale

图文 | 小尧


文章作者小尧 京东2年内时间从P1升级至P4,从财务行业转行数据分析,现任盛大网络数据分析师。在Datawhale担任本期知乎小组负责人。本文为 Datawhale 知乎小组第一期作品
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容