线程池的使用
背景: 为什么使用线程池?
并发的线程数量很多,并且每个执行时间都很短,这样频繁创建线程和销毁线程需要时间。所以java通过线程池达到这种效果。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。
##1. 线程池构造
线程池就是管理线程的池子,避免增加线程和销毁线程的资源损耗。同时线程可以被重复利用。
###1.1 Executor接口
**Executor**是最基础的执行接口只提供一个方法,主要执行已经提交Runnable任务对象,可以理解将任务提交和任务执行解耦的方法。
```java
void execute(Runnable command);
```
**ExecutorService**接口是继承Executor并对其进行扩展。ExecutorService接口主要扩展如下接口方法:
```java
void shutdown(); //启动一次有序的关闭,之前提交的任务执行,但不接受新任务
boolean isShutdown();
Future<?> submit(Runnable task); //提交一个可执行的任务,返回一个Future代表这个任务
<T> Future<T> submit(Runnable task, T result);//提交一个可以执行的任务,返回一个Future代表这个任务.任务执行完成future.get()返回给定的result
boolean isTerminated(); //如果所有任务都已经被终止,返回true
```
**TheadPoolExecutor**类继承AbstractExecutorService,是线程池进行提交任务、停止等操作的具体实现;
### 1.2 Executors类
Executors可以构造多种类型的线程池newFixedThreadPool()、newCachedThreadPool()、newScheduledThreadPool(int corePoolSize),但最终都是调用下面的构造函数:
```java
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
```
**corePoolSize**:核心线程数,线程池初始化就有这么多线程
**maximumPoolSize**:最大线程数大小
**keepAliveTime**:非核心线程空闲时存活时间
**unit**: 线程空闲存活时间单位
**workQueue**:存放任务的阻塞队列
**threadFactory**:创建线程的工厂
**handler**:线程池饱和策略事件
### 1.3 **四种拒绝策略**
(1)AbortPolicy(抛出一个异常,默认的)
(2)DiscardPolicy(直接丢弃任务)
(3)DiscardOldestPolicy(丢弃队列里最老的任务,将当前这个任务继续提交给线程池)
(4)CallerRunsPolicy(交给线程池调用所在的线程进行处理)
###1.4.线程池中队列排队的策略
(1)不排队,直接提交
将任务直接交给线程处理
(2)有界队列
可以使用ArrayBlockingQueue(基于数组结构的有界队列,FIFO),并指定队列的最大长度
(3)无界队列
可以使用LinkedBlockingQueue(基于链表的有界队列,FIFO),理论上是该队列可以对无限多的任务排队
##2. 线程池执行过程:
首先有请求过来提交任务,核心线程池看是否已满,没有满则使用核心线程去处理提交的任务;如果核心线程数已满,新提交的任务则会被放在任务队列中排队等待;当核心线程数已满并且任务队列也满了,判断线程数是否达到maximumPoolSize,没有达到则会激活最大线程数,进行处理提交任务;如果最大线程数也满了,新来的任务则直接使用拒绝策略处理。
###2.1 线程池状态
在ThreadPoolExecutor实现类中首先会看到开头定义了ctl原子类,构造函数中调用ctlOf()主要维护了线程池状态(高3位)和线程池数量(低29位)
```java
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
```
runStateOf(int c) 用于获取高3位线程池状态
workerCountOf(int c) 用于获取低29位线程数量
ctlOf(int rs, int wc) 将高3位和低29位合并
###2.2 execute()任务提交
1. 获取线程数如果小于核心线程数,使用新的线程去处理任务,创建成功则直接返回
2. 如果创建worker线程失败,判断线程池是否是running状态并将任务加入到阻塞队列中。如果成功则进行double-check,主要判断刚加入的workQueue阻塞队列是否被执行。
如果已经不是running状态,则直接删除任务,拒绝添加新的任务
如果线程池处于running状态,如果当前worker数量为0,通过addWorker(null, false)创建一个线程,其任务为null
3. 如果线程池不是running状态或者无法入队列,直接拒绝当前任务
```java
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
```
###2.3 addWork(Runnable firstTask, boolean core) - 添加worker线程
firstTask:是worker线程的初始任务;
core: true是corePoolSize做为上限,false为maximumPoolSize做为上限。
1. 判断线程池状态,如果线程池大于shutdown状态并且任务为空并队列不为空,直接返回
2. 判断线程池数量,如果超过核心线程数或者最大线程数则直接返回,如果没超过则线程数加1,直接跳出循环。如果加1失败,再次获取线程数继续执行循环。
3. 循环结束后,继续往下走,ReentrantLock保证线程安全,接下来主要添加新的work实例,完成后解锁并启动work线程,成功后返回true,失败后则调用addWorkerFailed()
```java
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
```
###2.3内部类worker
worker类继承AbstractQueuedSynchronizer达到线程安全效果,实现了Runnable类的run()方法。
构造方法Worker(Runnable firstTask)根据当前worker创建一个线程对象,然后firstTask调用run()方法执行业务任务
```java
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
```
###2.4 runWorker 执行任务
Work线程启动后,调用内部类worker的runWorker(this)
1. worker.unlock(),将AQS的state置为0,允许中断当前worker线程
2. 执行任务前加锁,防止在执行任务的时候被线程池的一些中断操作中断
3. 加锁后如果线程池停止或者线程中断,则任务中断
4. 执行beforeExecute()、task.run()、afterExecute()完成线程执行,如果异常后则抛异常,执行processWorkerExit()处理worker退出的流程
5. getTask()从阻塞队列中获取新的任务,当队列没有任务获取任务超时则当前woek退出流程
```java
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
```
###2.5 getTask()获取任务
1. 判断线程池状态为SHUTDOWN并且stop或者workQueue为空的时候,直接返回null,workerCount减一
2. 获取线程池数量,如果超过maximumPoolSize或者timedOut 和 timed 同时为true并且线程数大于1或线程池队列为空,线程池数量加1
3. 如果满足获取任务条件,根据是否需要定时获取调用不同方法:
workQueue.poll():如果在keepAliveTime时间内,阻塞队列还是没有任务,返回null
workQueue.take():如果阻塞队列为空,当前线程会被挂起等待;当队列中有任务加入时,线程被唤醒,take方法返回任务
```java
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
```