机器学习实战之训练模型-深入分析线性回归

线性回归模型就是对输入特征加权求和,再加上一个我们称为偏置项(截距)的常数,以此进行预测。它反映的是每一个特征对因变量的影响方向( θ值的正负)和影响力(θ 的绝对值大小)。

1. 模型说明

线性回归公式如下:

\hat{y}=θ_0+θ_1x_1+θ_2x_2+...+θ_nx_n

  • \hat{y}是预测值
  • n是特征的数量
  • x_i是第i个特征值
  • θ_j是第j个模型参数(包括偏置项θ_0以及特征权重θ_1,θ_2,...,θ_n

我也给出一个向量化的线性回归公式,看得明白的人就看一下,看不明白的人当作看明白就可以了。

\hat{y} = h_θ(X) = θ^T·X

  • θ是模型的参数向量(列向量)
  • θ^Tθ的转置向量(行向量)
  • X是实例特征向量(矩阵,包括x_0x_nx_0永远为1)
  • h_θ是使用模型参数θ的假设函数
  • θ^T·Xθ^TX的点积

在数学中,点积是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积

2. 成本函数

我们如何训练模型呢,我们需要知道如何衡量模型对训练数据的拟合程度的好与坏,回归模型最常见的性能指标(成本函数)是均方误差MSE,我们寻找一个θ,使得MSE最小化。

MSE=\sum_{i=1}^{n}(y_i-\hat{y}_i)^2

为了得到使得成本函数MSE最小值的θ,有一个闭式解方法,就是一个直接得出结论的数学方差,叫做标准方程。
\hat{θ} = (X^T·X)^{-1}·X^T·y

  • \hat{θ}是使得成本函数最小的θ
  • y是包含y^{(1)}y^{(n)}的目标值向量(因变量向量)

3. 标准方程Python实现

3.1 生成线性数据来进行模型拟合

我们通过y=4+3x+ε公式来生成模拟数(ε为高斯噪声)。

import numpy as np
import matplotlib.pyplot as plt 

X = 2 * np.random.rand(100,1)#生产100个1维随机数
y = 4 + 3 * X +np.random.randn(100,1)#生成满足y=4+3x的数据,加入一些随机值

我们看看部分的X,如下图

image

我们看看部分的y,如下图

我们把随机生成的X和y画出来看看。

3.2 标准方程求解

接下来我们用标准方程直接求解\hat{θ}。使用NumPy的线性代数模块np.linalg中的inv()函数对矩阵求逆,并用dot()方法计算矩阵的内积(点积)。

X2 = np.c_[np.ones((100,1)),X]#增加100个1的1维向量和X组合在一起,变成两个特征的向量,请大牛解析下面一行代码
theta_best = np.linalg.inv(X2.T.dot(X2)).dot(X2.T).dot(y)

X2是这样的:

我们直接打印theta_best 出来,它就是我们通过这个公式y=4+3x_0+ε 模拟的数据的\hat{θ}的结果:

我们期待的是我们得到的是模型参数是4.02和3.07,与4和3非常接近,噪声的存在使得我们不可能完成还原出原本的函数。

我们用我们得到的参数来进行预测

X_new = np.array([[0],[2]]) #x=0和x=2进行预测,X_new为列向量
X_new_b = np.c_[np.ones((2,1)),X_new] #X_new列向量增加一列常量为1的向量
y_predict = X_new_b.dot(theta_best)
y_predict

结果如下:

我们把原始数据和预测数据都画到同一个图上,也把模拟得到的回归曲线画出来

plt.scatter(X,y,c='green', alpha=0.6)
plt.scatter(X_new,y_predict,c='red', alpha=0.6)
plt.plot(X_new,y_predict,c='red')
plt.axis([-0.1,2.1,0,15]) #设置坐标轴的X和Y的最大值和最小值
plt.show()

3.3 Scikit-Learn实现

我们用Scikit-Learn的同样可以实现。

from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X,y)#sklearn的x不需要增加一个值为1的特征向量,默认回归是包含截距的
reg.intercept_,reg.coef_
reg.predict(X_new)

模型参数的拟合值和对X_new的预测值是一样的。

3.4 statsmodels实现

我们用statsmodels库再做一次

import statsmodels.api as sm
x1 = sm.add_constant(X) #X是一维,通过一个简单的函数,就可以增加一个值为1的特征向量,实现了X2 = np.c_[np.ones((100,1)),X]
models = sm.OLS(y,x1)
rs = models.fit()
print(rs.summary())

并且statsmodels给出了更详细的分析结果。
用statsmodels进行预测,注意rs.predict()里面的参数是包括常量1的列向量。

rs.predict(X_new_b)

结果是

array([ 4.02016133, 10.16541594])
和我们其他的方法是一样的。

3.5 梯度下降实现

这里再提供一个梯度下降算法达到统一的目标。梯度下降算法的原理就不解释了,具体请点击这里链接

eta = 0.1
n_iterations =1000
m = 100
theta = np.random.randn(2,1)
for iteration in range(n_iterations):
    gradients = 2/m * X2.T.dot(X2.dot(theta)-y)
    theta = theta - eta * gradients
theta

结果是一样的。

如果需要了解其他的线性回归的性能评估方法,请看《回归分析及预测性能评估(通过python的scikit-learn实现)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容