高数同济第七版上册第一章

第一章:函数与极限

一:函数的概念

1.两个无穷小的比较

设 lim f(x)=0,lim g(x)=0。 且lim (fx/gx)=n

(1)n= 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[g(x)],称g(x)是比f(x)低阶的无穷小。

(2)n≠ 0,称f (x)与g(x)是同阶无穷小。

(3)n = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)

2.常见的等价无穷小!(把狗头换成未知数X)

图片发自简书App

这些,常见的无穷小,都是当x趋于零的时候,才可使用!!

二.求极限的方法

1.两个准则

准则 1. 单调有界数列极限一定存在

准则 2.(夹逼定理)设g(x) ≤ f (x) ≤ h(x)

若lim g(x)=A,lim h(x)=A ; 则 lim f(x)=A

2.两个重要公式(也就是两个重要极限)

他们的原始形式以及推广变形后也应掌握

图片发自简书App
图片发自简书App

3.用无穷小重要性质和等价无穷小代换

也就是上面提到的那张狗图

4.用泰勒公式

当X趋于0时,有以下公式,可当做等价无穷小更深层次

图片发自简书App

5、洛必达法则(超级好用的定理!)

图片发自简书App

图片发自简书App

图片发自简书App

三:间断点的判断

(1)第一类间断点

设是函数y = f (x)的间断点。如果f (x)在间断点x0处的左、右极限都存在,则称x0是f (x)的第一类间断点。左右极限存在且相同但不等于该点的函数值为可去间断点。左右极限不存在为跳跃间断点。第一类间断点包括可去间断点和跳跃间断点。

(2)第二类间断点

第一类间断点以外的其他间断点统称为第二类间断点。常见的第二类间断点有无穷间断点和振荡间断点。

上边关于间断点都是理论知识,大家要静下心认真看一看,下面给大家两张图,或许有助于大家学习

图片发自简书App
图片发自简书App

四、闭区间上连续函数的性质

在闭区间[a,b]上连续的函数f (x),有以下几个基本性质。这些性质以后都要用到。

定理1.(有界定理)如果函数f (x)在闭区间[a,b]上连续,则f (x)必在[a,b]上有界。

定理2.(最大值和最小值定理)如果函数f (x)在闭区间[a,b]上连续,则在这个区间上一定存在最大值M 和最小值m 。

定理3.(介值定理)如果函数f (x)在闭区间[a,b]上连续,且其最大值和最小值分别为M 和m ,则对于介于m和M 之间的任何实数c,在[a,b]上至少存在一个ξ ,使得f (ξ ) = c

推论:如果函数f (x)在闭区间[a,b]上连续,且f (a)与f (b)异号,则在(a,b)内至少存在一个点ξ ,使得f (ξ ) = 0这个推论也称为零点定理



好啦第一章的考点就这些啦!祝大家学习愉快,期末不挂科!!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,744评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,505评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,105评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,242评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,269评论 6 389
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,215评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,096评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,939评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,354评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,573评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,745评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,448评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,048评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,683评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,838评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,776评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,652评论 2 354

推荐阅读更多精彩内容

  • 函数:设x和是y两个变量,D是一个给定的数集,如果对于每个数x在D范围内,变量y按照一定反则总有确定的值和他对应,...
    糖炒栗子_01c5阅读 1,232评论 0 0
  • 摘要:“微商,微分之商也。“微分和微商是高数的基本名词,它们的变化构成了高等数学入门的基础内容。因此,深入探究微分...
    Nino_Lau阅读 3,011评论 0 4
  • 函数、极限、连续 一.函数 1.实数 2.数集-确界原理 3.函数 3.1函数 函数的定义:给定两个实数集D和M,...
    微斯人_吾谁与归阅读 2,670评论 0 3
  • (参考百度百科) 导数定义: 设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+...
    萍水相逢_程序员阅读 1,926评论 0 6
  • 数学符号及读法大全 常用数学输入符号: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ...
    代瑶阅读 13,837评论 0 1