R可视化之美之科研绘图-27.三维散点图/3D散点图

本内容为【科研私家菜】R可视化之美之科研绘图系列课程

快来收藏关注【科研私家菜】


01 三维散点图/3D散点图

三维散点图就是在由3个变量确定的三维空间中研究变量之间的关系,由于同时考虑了3个变量,常常可以发现在两维图形中发现不了的信息。


library(plot3D)
library(scales)
library(RColorBrewer)
library(fields) 

df<-read.csv("ThreeD_Scatter_Data.csv",header=T)

pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1))
with(df, scatter3D(x = mph, y = Gas_Mileage, z = Power, #bgvar = mag,
                   pch = 21, cex = 1.5,col="black",bg="#F57446",
                   xlab = "0-60 mph (sec)",
                   ylab = "Gas Mileage (mpg)",
                   zlab = "Power (kW)", 
                   zlim=c(40,180),
                   ticktype = "detailed",bty = "f",box = TRUE,
                   #panel.first = panelfirst,
                   theta = 60, phi = 20, d=3,
                   colkey = FALSE)#list(length = 0.5, width = 0.5, cex.clab = 0.75))
)

效果如下:


02

index <- ceiling(((prc <- 0.7 * df$Weight/ diff(range(df$Weight))) - min(prc) + 0.3)*100)
for (i in seq(1,length(index)) ){
  prc[i]=colormap[index[i]]
}
pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1))
with(df, scatter3D(x = mph, y = Gas_Mileage, z = Power, #bgvar = mag,
                   pch = 21, cex = 1.5,col="black",bg=prc,
                   xlab = "0-60 mph (sec)",
                   ylab = "Gas Mileage (mpg)",
                   zlab = "Power (kW)", 
                   zlim=c(40,180),
                   ticktype = "detailed",bty = "f",box = TRUE,
                   #panel.first = panelfirst,
                   theta = 60, phi = 20, d=3,
                   colkey = FALSE)#list(length = 0.5, width = 0.5, cex.clab = 0.75))
)
colkey (col=colormap,clim=range(df$Weight),clab = "Weight", add=TRUE, length=0.5,side = 4)

效果如下:

index <- ceiling(((prc <- 0.7 * df$Weight/ diff(range(df$Weight))) - min(prc) + 0.3)*100)
for (i in seq(1,length(index)) ){
  prc[i]=colormap[index[i]]
}
pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1))
with(df, scatter3D(x = mph, y = Gas_Mileage, z = Power, #bgvar = mag,
                   pch = 21, cex = rescale(df$Weight, c(.5, 5)),col="black",bg=prc,
                   xlab = "0-60 mph (sec)",
                   ylab = "Gas Mileage (mpg)",
                   zlab = "Power (kW)", 
                   zlim=c(40,180),
                   ticktype = "detailed",bty = "f",box = TRUE,
                   theta = 60, phi = 20, d=3,
                   colkey = FALSE)
)
#colkey (col=colormap,clim=range(df$Weight),clab = "Weight", add=TRUE, length=0.5,side = 4)

breaks<-round(seq(500,2000,length.out=4),3)

legend_index <- ceiling(((legend_prc <- 0.7 *breaks/ diff(range(breaks))) - min(legend_prc) + 0.3)*100)
for (i in seq(1,length(legend_index)) ){
  legend_prc[i]=colormap[legend_index[i]]
}
legend("right",title =  "Weight",legend=breaks,pch=21,
       pt.cex=rescale(breaks, c(.5, 5)),y.intersp=1.6,
       pt.bg = legend_prc,bg="white",bty="n")

pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1))
with(iris, scatter3D(x = Sepal.Length, y = Sepal.Width, z = Petal.Length,pch = 21, 
                     cex = rescale(iris$quan, c(.5, 4)),col="black",bg=colormap[iris$quan],
                     xlab = "Sepal.Length",
                     ylab = "Sepal.Width",
                     zlab = "Petal.Length", 
                     ticktype = "detailed",bty = "f",box = TRUE,
                     theta = 30, phi = 15, d=2,
                     colkey = FALSE)
)
breaks =1:6
legend("right",title =  "Weight",legend=breaks,pch=21,
       pt.cex=rescale(breaks, c(.5, 4)),y.intersp=1.6,
       pt.bg = colormap[1:6],bg="white",bty="n")

效果如下:


参考资料

《R语言数据可视化之美》

关注R小盐,关注科研私家菜(溦❤工众號: SciPrivate),有问题请联系R小盐。让我们一起来学习 R可视化之美之科研绘图

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,185评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,652评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,524评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,339评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,387评论 6 391
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,287评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,130评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,985评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,420评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,617评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,779评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,477评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,088评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,716评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,857评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,876评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,700评论 2 354

推荐阅读更多精彩内容