(整式的乘除分为整式的运算(幂的运算) 整式乘法,整式的除法,综合应用,未来发展,五个层次。
整式运算(幂的运算)分为温故,整体感知。温故就是把我们之前所有学过的,比如说a的二次方等于a×a的知识调动出来进行学习新的知识,首先我们先看一下同底数幂乘法同底数幂乘法的法则是同底数幂相乘,底数不变,指数相加。
符号语言是这样表示的,
但前提是m和n都必须是正整数。而为什么我们会用到这个法则呢?这个法则又是怎么算出来的?
首先我们知道a的二次方是由a×a组成的.那么a的三次方就是由a×a×a组成的,那如果是a an次方,我们就可以化解成为有n个a相乘,那么他如果再乘以一个有m个a相乘的数字,那么他就可以得出一个由m个 n个a相乘的结果那也就是a的n+m次方,这样我们就可以得到我们上面所说的那个法则,所有数字都通用,但必须保证m和n都是正整数。
而命的运算还包括幂的乘方,幂的乘方是什么呢?幂的乘方其实也是一个法则,也就是幂的乘方底数不变,指数相乘,但它也必须满足mn都是正整数,而幂的乘方用符号语言,他表示是这样子的
我们所说的就是第二个式子,那他到底是为什么会是这样子的一个法则呢?首先我们知道a的m次方,也就是m个a相乘,但是当有n个这样的m个a相乘的时候,他就会变化为我们上述的式子,也就是a的m×n的次方,因为当有n个,a的m次方相乘。我们用符号语言来解释,就是这样子
而同底数幂的除法,它的法则是同底数幂相除,底数不变,指数相减。
当然也可以用原公式推导,也就是A的m-n次方.最后我们就是学到了零指数幂和负整数指数幂,负指数幂等于负数绝对值的幂的倒数这个到底是怎么推导出来的呢?这个我用符号语言给你解答,负指数幂就是a的m次方÷a的N次方,但是我们前面说到应该是M大约的时候那个式子才生效而这时候,如果是m小于n呢?那么,它剪出来的就会是一个负数。
这也就是我们以前所探索过的负指数幂等于负数绝对值的幂的倒数的由来,但是如果是零指数幂呢?当然,这个前提是a不能等于零,零指数幂,他的结果都为一,为什么他的结果都为一呢?我们可以刚刚得出这个负指数幂的方法再来一遍,当m=n的时候,我用符号语言在表示,
这也就得出了,为什么我们的零指数幂等于一?
现在我们来进行幂的计算的最后一个分支,科学计数法,科学计数法一般是表示一个大数,但是也可以表示,一个极小的数字,比如说一万,他就可以表示,10的四次方,而1/10000,他就可以表示10的负四次方,而如果是23万这样的数字,我们就可以把它化为2.3×10的五次方,这也就是我们的科学计数法.
而我们的第二大分支,也就是,整式的乘法,而整式的乘法它分为了单项式乘以单项式,多项式乘以单项式,多项式乘以多项式而多项式乘以多项式里面还可以分为两个分支,一个是平方差和一个是完全平方,前面的两个我们就先一笔带过,首先单项式乘以单项式,也就是把他们的相式分别乘在一起,如果是同类项就合并,如果不是同类项,如果也是同底数的话,也和上面的一样。
而多项式乘以单项式,就是把多项式的每一项分别乘以单项式。如图
而多项式乘以多项式的平方差公式,它的法则是两个数的积的和与这两个数的积的差的平方差。它必须满足的条件就是,多项式的每一项都必须和前面的相符合,只不过是把中间的符号变一下而已,所以就成了我所画的这样。
而我们又是怎么推导出来的呢?首先我们就是把多项式的每一项乘以另一个多项式把它换为单项式乘以多项式,加上单项式乘以多项式,我们就可以把它化解为,a方+ab-ab,减去b方,这样我们就可以化简成为a方 -b方了。
而完全平方公式,则是,完全平方和完全平方差两个公式,两个公式的法则是,两个数的差或和的平方等于这两个数的平方和加上或减去这两个数的乘积的2倍。
我们到底是怎么推导出来的呢?
而就是因为这样分解,所以我们才得出了公式。
而未来发展到底讲的是什么呢?(┯_┯)(┯_┯)
我认为未来发展讲的是,因式分解
我们现在已经学过一些因式分解了,这些因式分解呢?就是多项式乘以多项式的时候,把一个多项式分别拆开,乘以另一个多项式,这就叫因式分解,当然,把一个平方差公式的结果还原成一个平方差公式,也叫因式分解。
我觉得后续还会写更难的一些因式分解。