mediation analysis(中介分析)二

之前整理过一篇中介分析https://www.jianshu.com/p/a8912fcf5910
的笔记,那只是初步理论,等到真正做时会出现各种情况,这个不显著啦,那个显著,怎么直接和间接效应符号相反啊,等等,所以,有必要再整理一下。


茫茫网海中找到一篇特别好的,感谢原作者,粘贴过来可以帮助更多人。https://www.shangyexinzhi.com/article/1603825.html

你不想遇到的统计现象:完全中介与遮掩效应

导读

中介效应分析时有时会遇到三种不想遇到的统计结果:

(1)自变量X对因变量Y的总效应c不显著;

新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应

(2)中介效应ab与直接效应c’的符合相反;

新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应

(3)直接效应c’不显著。

新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应

前两种结果均属于遮掩效应范畴, 第三种属于完全中介范畴。如何区分和解释完全中介与遮掩效应, 请仔细阅读下文。

解析

知识回顾:

考虑自变量 X 对因变量 Y 的影响, 如果 X 通过影响变量 M 而对 Y 产生影响, 则称 M 为中介变量, 它可以分析变量之间影响的过程和机制。例如, 你通过室友认识你现在的女朋友, 那么你的室友就相当于中介变量。采用回归方程描述三个变量之间的关系(如下图所示):

新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应

(1) Y=cX+e1:X对Y的回归;

(2) M=aX+e2:X对M的回归;

(3) Y=c'X+bM+e3:X、M对Y的回归。

解读:

c:总效应(total effect):未加入中介变量前, 自变量对因变量的影响大小;

c’:直接效应(direct effect):加入中介变量后, 自变量对因变量的影响大小;

a*b:间接效应(indirect effect):a是自变量对中介变量的影响大小, b是中介变量对因变量的影响大小。

关系:c =c′+ab

中介效应占总效应的比例, 即ab/(c′+ab)。

中介效应占直接效应的比例, 即ab/c′。

传统中介效应检验流程:

以上三个回归方程也从数学的视角形象描述了中介效应检验流程:

第一步:检验c的显著性, 即自变量对因变量的影响;(注:c不显著无需进行后续分析, 中介不存在)

第二步:检验a 的显著性, 即自变量对中介变量的影响;

第三步:检验b和c’的显著性, 即中介变量对因变量的影响(b) , 自变量对因变量的直接影响(c’);(a、b至少有一个不显著, 采用Sobel检验, 结果显著, 则是部分中介, 反之, 中介不存在)

判断依据:a和b均显著, 说明中介效应显著。c’不显著, 则是完全中介;c’显著, 部分中介。

新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应

上述检验步骤是Kenny (1986)提出依次检验法(causal steps approach), 也称因果逐步法, 但近年来这种方法一直备受争议。

争议点1:自变量X对因变量Y的总效应c是否作为中介效应检验的前提?

如果系数 c 不显著, 就直接判定为中介效应不显著是有些武断的。有学者认为这个前提条件是不必要的, 这个前提条件的存在使得许多本来有意义的中介研究停止在第一步, 抑制了中介研究的发展和应用, 因为在系数 c 不显著的情况下完全可能存在中介效应。例如, Shrout和Bolger(2002)指出当ab 和 c' 方向相反时, 就可能会导致系数 c 不显著。Preacher和Hayes(2008)指出在有两个中介变量的模型中, 如果两个中介效应方向相反, 也可能会导致系数c不显著。

另一方面, 如果系数 c 不显著, 就说明 X 对 Y 的影响不显著, 如果还进一步探索“X如何影响 Y”或者“X 对 Y 的作用机制是什么”, 有些不合常理。此时, 合理的问题应当是“X 为何不影响Y”, 建模的逻辑已经与前面说的中介模型的逻辑不同了。比方说, 如果一个人买了房子, 你可以问“他是通过中介买的, 还是自己直接买的?”但如果一个人没有房子, 此时的问题应当是“他为啥没有房子?”, 可能根本就没有买过, 也可能买了又卖掉了(类似于符号相反的抵消)。

争议点2:区分完全中介和部分中介是否合适?

完全中介与部分中介提出的初衷在于对中介效应量的描述和解释, 后来研究者质疑这种区分的合适性。主要原因包括:

(1) 完全中介还是部分中介取决于回归系数 c' 是否显著, 而 c' 的显著性会受到样本量的影响。样本量越大, 标准误越小, c' 越容易得到显著的结果。所以, 完全中介和部分中介可能没有实质性的区分, 当你收集足够大的样本时, 之前完全中介的结论可能变为部分中介。

(2) 完全中介并不意味着中介变量是唯一的, 实际上可能还存在其他中介变量。由此可见, 完全中介的结论容易阻碍研究者进一步探索其他中介变量, 从这个角度而言, 完全中介应该解释为“主要中介”可能更为合适。

因此, Preacher和Hayes (2008)呼吁放弃完全中介的概念, 将所有中介都看作是部分中介。也有研究者建议直接报告间接效应和直接效应的显著性, 是可取的做法。 那么如果直接效应c’不显著如何解释?可以表述为:自变量X主要通过中介变量M影响因变量Y。

新中介效应检验流程:

除了依次检验法外, 也发展了多种替代的检验方法, 例如, 乘积系数Sobel检验、差异系数检验法和Bootstrap法。其中, Bootstrap法的统计检验力最高, 已被广泛应用于中介效应检验, 但每种检验方法都有利弊, 因此, 温忠麟等人(2014)综合了依次检验法和 Bootstrap 法的优点, 推荐先尝试简单的依次检验 a 和 b, 如果不显著则用 Bootstrap 法直接检验系数乘积 ab 以提高检验力。采用这一流程, 无论是考虑第一类错误率、检验力还是结果的解释性, 与单纯的 Bootstrap 法检验系数乘积相比, 只会更好不会更差。

新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应

注:图中箭头的增减纯属个人意见。

第一步:对总效应 c 进行检验。如果总效应显著, 则按中介效应立论。否则, 按照遮掩效应立论。总效应 c 是否显著都不影响之后的检验, 只是最后的结果解释有所不同。

第二步:对中介效应涉及的两个路径系数 a 和 b 进行依次检验。如果二者都显著, 则说明中介效应存在, 报告 ab 的置信区间, 转到第四步检验直接效应。这里计算置信区间也应该用 Bootstrap 方法而非 Sobel 方法。如果系数 a 和 b 中至少有一个不显著, 进行第三步。

第三步:使用 Bootstrap 方法检验假设 H0: ab=0。如果结果显著, 则中介效应存在, 进入第四步直接效应的检验。如果结果不显著, 则就可以判定中介效应不存在, 分析停止。

第四步, 确定中介效应存在后, 检验直接效应 c'。若不显著, 则说明是完全中介效应。按照中介效应解释结果即可。否则, 系数显著, 说明存在中介效应, 进行下一步。

第五步, 中介效应和直接效应都存在时, 比较 ab 和 c'的符号。若二者同号, 则说明是部分中介效应, 报告效应量 ab/c。如果二者符号相反, 则说明是遮掩效应, 报告效应量|ab/c'|。除了 ab/c 或|ab/c'|, 也可以酌情报告其他的效应量。

遮掩效应:

在传统的中介效应检验中, 要求系数c必须显著, 方可继续后续分析。在这一前提下, 中介效应用来说明“X如何影响Y”, 或“X 对 Y 的影响机制”。然而, 温忠麟等(2014)指出, 即使系数 c 不显著, 间接效应还是可能存在, 因为可能存在间接效应(ab) 符号与直接效应( c’) 的符号相反, 出现效应被遮掩的情况, 不少文献称之为“遮掩效应”(温忠麟, 叶宝娟, 2014), 属于广义上的中介效应。这个时候, 中介模型的逻辑已从传统中介模型“X 对 Y 的影响机制”转变为“X 是如何不影响 Y 的机制”。

如何解释:

(1) 如果ab与c’的符号相同, 则按中介效应解释, 结果报告中应报告 ab /c;

(2) 如果ab与c’的符号相反, 则按遮掩效应解释, 结果报告中应报告 | ab /c'|;

按照总效应c是否显著又可以分为两种情况:

① ab与c’符号相反, c也显著, 可以直接解释为X通过提高或降低M, 进而降低或提高Y;

样例参考:

新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应
新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应

② ab与 c’符号相反, c不显著, 应该解释为X如何不影响Y。

样例参考:

新知图谱, 你不想遇到的统计现象:完全中介与遮掩效应

参考文献:

苏斌原, 张卫, 苏勤, 喻承甫. (2016). 父母网络监管对青少年网络游戏成瘾为何事与愿违?——一个有调节的中介效应模型. 心理发展与教育, 5, 604–613.

温忠麟, 叶宝娟. (2014). 中介效应分析: 方法和模型发展.心理科学进展, 5, 731–745.

罗一君, 孔繁昌, 牛更枫, 周宗奎. (2017). 压力事件对初中生抑郁的影响:网络使用动机与网络使用强度的作用. 心理发展与教育, 3, 337–344.

Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422–445.

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect

effects in multiple mediator models. Behavior Research Methods, 40, 879–891.

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182.
————————————————————————————————————————
还有一个视频也超级不错https://www.bilibili.com/video/BV1m4411D7YJ?from=search&seid=6539399468085227875

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352