(14)监督学习-分类问题-决策树

    决策树算法分为ID3,C4.5,CART几种。其主要区别在于特征选择的方法不同。

    1、 ID3

        特征选择方法:信息增益  

             熵H(X) = -plog(p)求和,g(D,A) = H(D)-H(D,A),g越大,说明某一条件下,减少数据不确定性的程度越大。越适合做分类条件

        特点是:只有树的生成,容易产生过拟合。只能处理离散性数据

    2、 C4.5

        特征选择方法:信息增益率; 信息增益大小没有绝对意义,使用比例对其进行矫正。

             g1(D,A) = g(D,A)/H(D);属性a可取值的数目越大H(D)越大。(比如一些数据 中,序号增益最大,但无用)可处理连续性数据。

    3、 CART (又叫树回归或者分类回归树)

        特征选择方法:基尼系数,表示集合的不确定程度,基尼系数越大,不确定程度越大。(从一个数据集中取数据,其被分到别的分组中的概率)选择基尼系数最小的作为划分点。(按每个特征,特征中的各个属性求其基尼系数);也有采用香农商作为不纯度的度量,也有用误差不纯度,不同的不纯度度量对结果影响不大。

        算法流程包括:特征选择、树的生成,剪枝;可以处理连续性数据和离散性数据

        在生成树的基础上,进行剪枝。(根据损失函数,如果删除某一个节点可以使得损失函数的值变小,则减去)剪枝方法分为预剪枝和后剪枝,后剪枝效果更好,根据是否可以减少损失来决定节点是否合并。预剪枝就是在树的构建过程(只用到训练集),设置一个阈值,使得当在当前分裂节点中分裂前和分裂后的误差超过这个阈值则分列,否则不进行分裂操作。

    后剪枝效果最好,因为在构建树时信息被充分利用了。预剪枝有欠拟合的风险,采用的是贪心思想。

    特点:连续数据,二叉树,划分标准。

    用样本类型上讲,ID3只能处理离散型数据,C4.5和CART都可以处理连续型数据。

    从应用上讲,ID3和C4.5都只能用于分类,CART也可以用于回归任务(使用最小平方误差准则)。


    

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,367评论 6 512
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,959评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,750评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,226评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,252评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,975评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,592评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,497评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,027评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,147评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,274评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,953评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,623评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,143评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,260评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,607评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,271评论 2 358

推荐阅读更多精彩内容