常见概率分布Week3打卡

本文为数据观星阁学习作业,本文参考博文如下,感谢原作者!

一.正态分布

作者:hhaowang来源:CSDN

原文:https://blog.csdn.net/hhaowang/article/details/83898881

版权声明:本文为博主原创文章,转载请附上博文链接!

正态分布(英语:normal distribution)又名高斯分布(英语:Gaussian distribution),是一个非常常见的连续概率分布。正态分布在统计学上十分重要,经常用在自然和社会科学来代表一个不明的随机变量。

则其概率密度函数为

正态分布的数学期望值或期望值\mu 等于位置参数,决定了分布的位置;其方差\sigma ^2 的开平方或标准差\sigma 等于尺度参数,决定了分布的幅度。

正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线(类似于寺庙里的大钟,因此得名)。我们通常所说的标准正态分布是位置参数\mu =0,尺度参数\sigma ^2=1的正态分布。

---------------------


二.二项分布

作者:R语言和Python学堂

链接:https://www.jianshu.com/p/59335680cc29

假设某个试验是伯努利试验,其成功概率用p表示,那么失败的概率为q=1-p。进行n次这样的试验,成功了x次,则失败次数为n-x,发生这种情况的概率可用下面公式来计算:


我们称上面的公式为二项分布(Binomial distribution)的概率质量函数。其中


组合公式,表示从n个不同元素中取出x个元素的所有组合的个数。


性质:

1.二项分布的均值和方差分别为np和npq;

2.二项分布的另一个性质是其分布形状的变化规律。从二项分布概率质量函数P(x)可知,概率分布只与试验次数n和成功概率p有关,其分布形状的变化规律为:

"成功"概率p越接近0.5(也即"成功"概率与"失败"概率越接近),二项分布将越对称。保持二项分布试验的次数n不变,随着成功概率p越接近0.5,二项分布逐渐对称,且近似于均值为np、方差为npq的正态分布

三.Poisson分布

作者:thinkando

参考链接:https://www.jianshu.com/p/6ee90ba47b4a

泊松分布解决的是“在特定时间里发生n个事件的机率”。

P 表示概率,N表示某种函数关系,t 表示时间,n 表示数量,1小时内出生3个婴儿的概率,就表示为 P(N(1) = 3) 。等号的右边,λ 表示事件的频率。

Poisson分布图形




四.均匀分布

作者:hongxue8888

参考链接:https://blog.csdn.net/hongxue8888/article/details/78217283


若连续型随机变量X具有概率密度


则称X在区间(a,b)上服从均匀分布。记为X~U(a,b)。易知f(x)≥0,且

在区间(a,b)上服从均匀分布的随机变量X,具有下述意义的等可能性,即它落在区间(a,b)中任意等长度的子区间内的可能性是相同的。或者说它落在(a,b)的子区间内的概率只依赖于子区间的长度而与子区间的位置无关。事实上,对于任一长度L的子区间(c,c+l),a≤c<c+l≤b ,有


对于随机变量X的分布函数F(x),存在非负函数f(x),使对于任意实数x有  



五.卡方分布

若n个相互独立的随机变量ξ₁,ξ₂,...,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)

若n个相互独立的随机变量ξ₁、ξ₂、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和



卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,卡方分布近似为正态分布。

对于任意正整数x, 自由度\nu 卡方分布是一个随机变量X的机率分布

六.Beta分布

贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,在机器学习和数理统计学中有重要应用。在概率论中,贝塔分布,也称Β分布,是指一组定义在(0,1) 区间的连续概率分布

Β分布的概率密度函数是:



Β分布的累积分布函数


性质:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容