基于LBP人脸特征提取算法的人员身份信息验证matlab仿真

1.算法仿真效果

matlab2022a仿真结果如下:


2.算法涉及理论知识概要

LBP(Local Binary Patterns,局部二值模式)是提取局部特征作为判别依据的。LBP方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题。不过相比于特征脸方法,LBP的识别率已经有了很大的提升。在[1]的文章里,有些人脸库的识别率已经达到了98%+。LBP是Local Binary Patterns的缩写,即局部二值模式。它是由T. Ojala, M. Pietikäinen和 D. Harwood等人在1994年提出来的,属于一种特殊的、简单有效的纹理特征描述子(Feature Descriptor)。


LBP描述子不仅计算过程相对简单,而且产生的最终效果也不错,因而在学术界和工业界的很多领域都得到了较为广泛的应用。例如,目前非常火热的人脸识别研究方向中就有不少采用了这种描述子来完成。另外,OpenCV和scikit-image等多种图像处理库也专门提供了LBP的实现接口,其重要性可见一斑。


最初的LBP是定义在像素3x3邻域内的,以邻域中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3x3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该邻域中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:



用比较正式的公式来定义的话:



其中代表3x3邻域的中心元素,它的像素值为ic,ip代表邻域内其他像素的值。s(x)是符号函数,定义如下:



LBP还有另外一个变种是统一模式(Uniform Patterns)。其本质是基于旋转不变性特征和降维,将LBP的直方图表示从256降到59个BIN即可表示。统一模式的58个LBP表示如下(其中R=1,圆形)除此以外的都被称为非统一模式,全部放到一个BIN里面即可,这样总数就是59个BIN。而在纹理匹配中,通过傅里叶变换到频域空间,可以得到旋转不变性特征,实现基于LBP的纹理匹配。




3.MATLAB核心程序

[filename,pathname]=uigetfile({'*.jpg';'*.tif'},'file selector');

str=[pathname filename];

I=imread(str);

axes(handles.axes1);


imshow(I);


lbp_face=[];

[lbp_face,feature]=lbpfeaturevector2(I,100,20);

axes(handles.axes2);

imshow(feature);

load('fb_lbp_face.mat')

ss=[];

ss=LBP_face(:,:);

ref_labels=label;

ref_label=number_label;

L=zeros(1,size(ss,2));

text=[];

%d=sum((A-B).^2);


for j=1:size(ss,2)

w=0;

for i=1:size(lbp_face,1)

w=w+(((ss(i,j)-lbp_face(i,1)).^2)./(ss(i,j)+lbp_face(i,1)+(1e-10)));%chi aquare statistic

end

w=sqrt(w);

L(j)=w;

end

[value,idx]=sort(L,'ascend');

sort_labels=ref_labels(idx);

sort_label1=ref_label(idx);

% set(sort_label,'String',sort_label1);

sort_label=cell2mat(sort_labels(1));

% sort_label=sort_label1{1};

if (sort_label1(1)<43)

str=['.\fb_face\' sort_label 'fb010_930831.jpg'];

end

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容