监督学习算法

  • 本文首发自公众号:RAIS,点击直接关注。

前言

本系列文章为 《Deep Learning》 读书笔记,可以参看原书一起阅读,效果更佳。由于各平台 Markdown 解析差异,有些公式显示效果不好,请到我 个人维护网站 查看。

监督学习算法

监督学习算法的定义是,给定一组输入 x 和输出 y,学习如何将其关联起来,现在的大部分情况都是监督学习算法的范畴。

逻辑回归

很多的监督学习算法是基于估计概率分 布P(y|x) 的,假设参数服从高斯分布,我们可以使用最大似然估计找到对于有参分布族 P(y|x;θ) 最好的参数向量 θ,即用最大似然估计得到目标函数,优化这个目标函数。线性回归对应于高斯分布分布族,通过定义一族不同的概率分布,可将线性回归扩展到分类情况中。

具体的做法就是将线性函数的输出使用 sigmoid 函数(就是前文说的那个样子像 S 型)将其压缩到 (0, 1) 空间内,这就叫做逻辑回归。注意这个逻辑回归不是回归,而是用来解决分类问题。当然,线性回归也可以推广为 Softmax 回归,不是这里的重点。

支持向量机

支持向量机是监督学习中关于分类与回归问题中重要的算法。与逻辑回归类似,这个模型也是基于线性函数的,不过输出有所不同,不输出概率,而是输出类别,为正正类,为负负类。

核技巧,其实这是一个数学上的概念,用来增加维度区分不同数据,如下图,区分下图中左侧的四个点,用的方法是增加一个维度,然后用平面分割,这与用一条曲线去分割没什么本质的区别,来自 视频

核技巧

上面这样做也会有一个问题,在数据量大且维数很多的情况下,会导致计算量急剧增大,这不好。核函数就是用来解决这个问题的,核函数只是用来计算映射到高维空间之后的内积的一种简便方法,隐含着也从低纬到高维的映射,但其计算量可控,降低计算的复杂度,甚至把不可能的计算变为可能,可以将低纬空间内线性不可分的两类点变成线性可分的。

机器学习中最常用的核函数是高斯核(也称径向基函数),N(x;μ,∑) 是标准正态分布,能够把原始特征映射到无穷维,能够比较 u 和 v 的相似度,映射到 0 和 1:

k(u,v)=N(u-v;0,\sigma^2I)

其他监督学习算法

临近回归:前面介绍过最近临近回归,这也是一种非概率监督学习算法。K-最近邻回归是一种可以用于分类或回归的算法,K-最近邻算法就是从训练集(根本就没训练,感觉叫训练集都不太准确,应该叫样本集)中找到与测试输入的点最近的 K 个点,然后采用少数服从多数的思想,谁多就听谁的(分类),或者求平均(回归),但是这在 K 取值不同的时候,得到的结果可能不同,因此 K 的选择是比较重要的。这个方法的特点是训练集可以趋近于无穷大,在比较好的情况下回收敛到贝叶斯错误率。这个方法需要训练集较大,训练集较少的情况下泛化程度不够好;且其由于几乎没有训练的过程,因此也不能学习出特征中哪些是更有识别力的,无法找到关键属性。

决策树:决策树会将输入空间分成不重叠的子区域,叶节点和输出区域一一对应。构建决策树前需要根据信息增益的方法进行特征选择,然后生成决策树,为防止过拟合可能还需要进行剪枝。

总结

本文介绍了几种最常见的监督学习算法。

  • 本文首发自公众号:RAIS,点击直接关注。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容