一、数据分析概念
数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
数据分析与数据挖掘密切相关,但数据挖掘往往倾向于关注较大型的数据集,较少侧重于推理,且常常采用的是最初为另外一种不同目的而采集的数据。
二、数据分析的目的与意义
数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。因此数据分析有极广泛的应用范围。
三、数据分析的功能
数据分析主要包含下面几个功能:
1. 简单数学运算(Simple Math)
2. 统计(Statistics)
3. 快速傅里叶变换(FFT)
4. 平滑和滤波(Smoothing and Filtering)
5. 基线和峰值分析(Baseline and Peak Analysis)
四、数据分析的类型
在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
探索性数据分析:是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。定性数据分析:又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据的分析。
五、数据分析步骤数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。