参考这个例子用Caffe在MNIST数据集上训练LeNet
网络结构域定义在这个prototxt
文件中$CAFFE_ROOT/examples/mnist/lenet_train_test.prototxt
网络名
name: "LeNet"
数据输入层
layer {
name: "mnist" #层名
type: "Data" #类型
transform_param {
scale: 0.00390625 #1/255,像素点归一化到0~1
}
data_param {
source: "mnist_train_lmdb"
backend: LMDB
batch_size: 64 #批尺寸
}
top: "data" #输出
top: "label" #输出
}
卷积层
layer {
name: "conv1"
type: "Convolution" #卷积
param { lr_mult: 1 } #学习率是solver里的1倍
param { lr_mult: 2 } #学习率是2倍
convolution_param {
num_output: 20 #输出通道数
kernel_size: 5 #卷积核尺寸
stride: 1 #步长
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "data"
top: "conv1"
}
池化层
layer {
name: "pool1"
type: "Pooling" #池化层
pooling_param {
kernel_size: 2
stride: 2
pool: MAX
}
bottom: "conv1"
top: "pool1"
}
全连接层
layer {
name: "ip1"
type: "InnerProduct" #全连接层
param { lr_mult: 1 }
param { lr_mult: 2 }
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "pool2"
top: "ip1"
}
ReLu输出
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
再前连接层
layer {
name: "ip2"
type: "InnerProduct"
param { lr_mult: 1 }
param { lr_mult: 2 }
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "ip1"
top: "ip2"
}
代价函数
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
}
Solver配置
$CAFFE_ROOT/examples/mnist/lenet_solver.prototxt
# The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
# solver mode: CPU or GPU
solver_mode: GPU
训练
./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt