2021AAAI-BestPaper-Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

作者以及单位

周号益 北航

解决问题

从论文作者演讲的ppt来看,Transformer存在一些严重的问题:二次时间复杂度、高内存使用率以及encoder-decoder体系结构的固有限制。

论文作者的ppt

简单的说本文解决的核心问题:比其他的sota工作,在设定预测时间更长的情况下,要更准!,如下图所示:长度从96开始,预测就走下坡路了。

问题说明

研究动机

纵观以下参考提供的两个视频原作者对自己工作的解读,我感觉本文最好的地方就是逻辑特别清晰,动机解释的 特别好,建议好好读一下原文。

原始Transformer的问题

1.self-attention的二次计算复杂度,self-attention机制的操作,会导致我们模型的时间复杂度为O(L^2);
2.长输入的stacking层的内存瓶颈:J个encoder/decoder的stack会导致内存的使用为O(J*L^2);
3.预测长输出的速度骤降:动态的decoding会导致step-by-step的inference非常慢。

本文的研究动机归为以下几点:

首先,LSTF任务具有重要研究意义,对政策计划和投资避险等多种需要长时预测的任务至关重要;
目前现有方法多专注于短期预测,模型缺乏长期预测能力;
Transformer具有较强捕获长距离依赖的能力,但是,在计算时间复杂度和空间复杂度以及如何加强长序列输入和输出关联上都需要优化;

上述三点对应Informer的主要贡献点:

ProbSparse self-attention,作者称其为概率稀疏自注意力,通过“筛选”Query中的重要部分,减少相似度计算。
Self-attention distilling,作者称其为自注意力蒸馏,通过卷积和最大池化减少维度和网络参数量。
Generative style decoder,作者称为生成式解码器,一次前向计算输出所有预测结果。

研究方法

左边:编码过程,编码器接收长序列输入(绿色部分),通过ProbSparse自注意力模块和自注意力蒸馏模块,得到特征表示。(堆叠结构增加模型鲁棒性)
右边:解码过程,解码器接收长序列输入(预测目标部分设置为0),通过多头注意力与编码特征进行交互,最后直接预测输出目标部分(橙黄色部分)。


核心架构

创新点

和上述动机对应的贡献是一样,对应以下这三点,现在分别简单叙述,详情请见论文。1.概率稀疏注意力机;2. 自注意力蒸馏编码器;3. 生成式解码器

1.概率稀疏注意力机制

我们首先对典型自我注意的学习注意模式进行定性评估。“稀疏性” self-attention得分形成长尾分布,即少数点积对主要注意有贡献,其他点积对可以忽略。那么,这个问题可以进一步推为如何区分它们?。我直接引用一些文章的分析,如下:


其实这一部分核心工作就是红框所示(解释和推理工作比较长)。

2. 自注意力蒸馏编码器

编码器的主要功能是捕获长序列输入之间的长范围依赖。在输入表示部分,笔者已经介绍过输入为X^t。包含了三个部分(卷积后的序列输入,全局位置嵌入,局部位置表示)。

预处理核心:scalar+stamp

作者的ppt

此后将输入送至自注意力模块,值得注意的是这里采用的是自注意力蒸馏操作,可以减少网络参数,并且随着堆叠层数增加,不断”蒸馏“突出特征。
具体而言,”蒸馏”操作主要为使用1D卷积和最大池化,将上一层的输出送至模型后的多头注意力模块之前做维度修剪和降低内存占用。
作者的图还是画的蛮好的

3. 生成式解码器

解决方法加入concat,不选择一个额定的标记作为标记,这样不用依赖前一个才能预测后一个(这个是问题核心)。在公式中,就是加X_0

结论

无论是单变量的长序列预测还是多变量的长序列预测,Informer均能在多数数据集上取得最优表现。
Informer能获得AAAI的Best Paper确实有很多值得肯定的地方。首先,从逻辑上对本工作的研究动机、研究内容,讲故事的能力确实很重要。此外,实验部分比较充实,能够把动机提出的疑惑都一一解答了,堪称完美。
在研究内容上,Best Paper肯定不是靠A+B。确实,本文在self-attention模型的问题上认识较为深刻。

参考

作者 周号益视频讲解:
【AI TIME PhD AAAI-8】类Transformer模型的长序列分析预测新方向-周号益_哔哩哔哩_bilibili
B站讲解:
【AI Drive】AAAI 2021最佳论文:比Transformer更有效的长时间序列预测_哔哩哔哩_bilibili
源代码:
GitHub - zhouhaoyi/Informer2020: The GitHub repository for the paper "Informer" accepted by AAAI 2021.
基于Transformer的时间序列预测-Informer-AAAI21 BEST PAPER - 知乎 (zhihu.com)
AAAI21最佳论文Informer:效果远超Transformer的长序列预测神器! (qq.com)
Attention 注意力机制 - 知乎 (zhihu.com)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容