汉诺塔问题
描述
在经典的汉诺塔问题中,有 3 个塔和 N 个可用来堆砌成塔的不同大小的盘子。要求盘子必须按照从小到大的顺序从上往下堆 (如,任意一个盘子,其必须堆在比它大的盘子上面)。同时,你必须满足以下限制条件:
(1) 每次只能移动一个盘子。
(2) 每个盘子从堆的顶部被移动后,只能置放于下一个堆中。
(3) 每个盘子只能放在比它大的盘子上面。
请写一段程序,实现将第一个堆的盘子移动到最后一个堆中.
在编程训练网站完成训练: https://www.lintcode.com/problem/mock-hanoi-tower-by-stacks/description
public class Tower {
private Stack<Integer> disks;
/*
* @param i: An integer from 0 to 2
*/
public Tower(int i) {
// create three towers
disks = new Stack();
}
/*
* @param d: An integer
* @return: nothing
*/
public void add(int d) {
// Add a disk into this tower
if (!disks.isEmpty() && disks.peek() <= d) {
System.out.println("Error placing disk " + d);
} else {
disks.push(d);
}
}
/*
* @param t: a tower
* @return: nothing
*/
public void moveTopTo(Tower t) {
// Move the top disk of this tower to the top of t.
if(t.disks.isEmpty() || (!disks.isEmpty() && t.disks.peek() >= disks.peek())) {
t.disks.push(disks.pop());
}
}
/*
* @param n: An integer
* @param destination: a tower
* @param buffer: a tower
* @return: nothing
*/
public void moveDisks(int n, Tower destination, Tower buffer) {
// Move n Disks from this tower to destination by buffer tower
if(n <= 0) {
return;
} else if(n == 1) {
moveTopTo(destination);
} else {
moveDisks(n-1, buffer, destination);
moveDisks(1, destination, buffer);
buffer.moveDisks(n-1, destination, this);
}
}
/*
* @return: Disks
*/
public Stack<Integer> getDisks() {
// write your code here
return disks;
}
}