注:本文参考的hadoop版本是:3.3.2
RPC生命周期
在ProcessingDetails.Timing枚举类里:
/**
* The different stages to track the time of.
*/
public enum Timing {
// reader线程把Call放入call queue的时间
ENQUEUE, // time for reader to insert in call queue.
// Call在call queue里等待处理的时间
QUEUE, // time in the call queue.
// handler线程的一些消耗(不在处理/响应的时间)
HANDLER, // handler overhead not spent in processing/response.
// handler花在处理call上的时间:等于lock free + lock wait + lock shared + lock exclusive的时间
PROCESSING, // time handler spent processing the call. always equal to
// lock_free + lock_wait + lock_shared + lock_exclusive
LOCKFREE, // processing with no lock.
LOCKWAIT, // processing while waiting for lock.
LOCKSHARED, // processing with a read lock.
LOCKEXCLUSIVE, // processing with a write lock.
// encode和发送相应的时间。
RESPONSE; // time to encode and send response.
}
TODO:画一幅图,标注出每个阶段。
Handler的run方法内部,每次执行完一个call#run方法之后,finally块里会调用updateMetrics进行RPC相关指标的统计。
1、ENQUEUE
这个阶段是reader将请求插入到call queue里的时间。
internalQueueCall方法:
private void internalQueueCall(Call call, boolean blocking)
throws IOException, InterruptedException {
try {
// queue the call, may be blocked if blocking is true.
if (blocking) {
callQueue.put(call);
} else {
callQueue.add(call);
}
// 这个delta就是ENQUEUE的时间,因此我们要看call.timestampNanos是什么?
long deltaNanos = Time.monotonicNowNanos() - call.timestampNanos;
call.getProcessingDetails().set(Timing.ENQUEUE, deltaNanos,
TimeUnit.NANOSECONDS);
} catch (CallQueueOverflowException cqe) {
// If rpc scheduler indicates back off based on performance degradation
// such as response time or rpc queue is full, we will ask the client
// to back off by throwing RetriableException. Whether the client will
// honor RetriableException and retry depends the client and its policy.
// For example, IPC clients using FailoverOnNetworkExceptionRetry handle
// RetriableException.
rpcMetrics.incrClientBackoff();
// unwrap retriable exception.
throw cqe.getCause();
}
}
timestampNanos是这个rpc call被接收时的时间。
全文请参考链接:
https://blog.csdn.net/yexiguafu/article/details/128850802