[并发集合] ConcurrentSkipListMap预备知识跳表

转自 公众号 【彤哥说源码】

1 前言

何为跳表?

跳表是一个随机化的数据结构,实际上就是一种可以进行二分查找的有序列表。跳表在原来的有序列表上面增加了多级索引,通过索引来实现快速查找。

跳表不仅能提高搜索性能,同时也可以提高插入和删除操作的性能。

2 跳表详解

2.1 有序列表


在上面的有序列表中,查找3,7等元素,只能从头开始遍历链表,直到查找到元素为止。

链表是有序的,但是不能使用二分查找(数组是可以实现二分查找的),那么如何实现有序列表的二分查找
——答案是肯定的,跳表。

2.2 跳表的演进

将一些节点从有序链表中提取出来,缓存一级索引,就组成了下面的结构:

如果现在查找元素17是怎样的过程呢?
只要从一级索引往后遍历即可,只需要经过1、6、15、17这几个元素就可以找到17了。
那么,如何查找11这个元素呢?
从一级索引的1开始,向右到6,再向右发现是15,比11大,此路不通,回退,从6往下走,再从下面的6往右走,到7,再到11。

同样地,一级索引也可以往上再提取一层,组成二级索引,如下:


这时候我们再查找17这个元素呢?
只需要经过6、15、17这几个元素就可以找到17了。

这基本上就是跳表的核心思想了,其实这也是一个“空间换时间”的算法,通过向上提取索引增加了查找的效率

2.3 跳表的插入

如何向跳表中插入元素呢?
比如,要向上面这个跳表添加一个元素8。
首先,随机选择该元素8要占据的索引层数,如果level=2,找到元素8在这两层的前置节点,
比如元素8在第一层的前置节点就是7,在第二层的前置节点就是6,接着就是链表的插入元素操作,比较简单。

2.4 跳表的删除

如何删除元素呢?
首先,找到各层中包含元素x的节点,然后,使用标准的链表删除元素的方法删除就可以。
比如删除17这个元素,找到元素17的前置节点为15,将所有15的next节点指向null即可。

3 标准化的跳表

举的例子是完全随机的跳表,那么,如果我们每两个元素提取一个元素作为上一级的索引会怎么样呢?


这种结构特别像平衡二叉树,如下


可以看见,上一级元素的个数是下一级的一半,这样每次减少一半,就很接近平衡二叉树了。

4.计算时间复杂度

单链表查询的时间复杂度为O(n),而插入、删除操作需要先找到对应的位置,所以插入、删除的时间复杂度也是O(n)。
跳表的时间复杂度是多少?
如果按照标准的跳表来看的话,每一级索引减少k/2个元素(k为其下面一级索引的个数),那么整个跳表的高度就是(log n)。
对于平衡二叉树而言,它的时间复杂度与树的高度成正比,即O(log n)。
所以,这里跳表的时间复杂度也是O(log n)。(这里不一步步推倒了,只要记住,查询时每次减少一半的元素的时间复杂度都是O(log n),比如二叉树的查找、二分法查找、归并排序、快速排序)

5.计算空间复杂度

我们还是以标准的跳表来分析,每两个元素向上提取一个元素,那么,最后额外需要的空间就是:

n/2 + n/(2^2) + n/(2^3) + ... + 8 + 4 + 2 = n - 2

所以,跳表的空间复杂度是O(n)。

6.总结

(1)跳表是可以实现二分查找的有序链表;

(2)每个元素插入时随机生成它的level;

(3)最低层包含所有的元素;

(4)如果一个元素出现在level(x),那么它肯定出现在x以下的level中;

(5)每个索引节点包含两个指针,一个向下,一个向右;

(6)跳表查询、插入、删除的时间复杂度为O(log n),与平衡二叉树接近

面试问题:

  1. 为什么Redis选择使用跳表而不是红黑树来实现有序集合?
    答案:
    Redis中sorted set支持的操作有
    <1> 插入元素 <2> 删除元素 <3> 查找元素 <4> 有序输出所有元素 <5> 查找区间内所有元素
    其中,前4项红黑树都可以完成,且时间复杂度与跳表一致。

但是,最后一项,红黑树的效率就没有跳表高了。

在跳表中,要查找区间的元素,我们只要定位到两个区间端点在最低层级的位置,然后按顺序遍历元素就可以了,非常高效。

而红黑树只能定位到端点后,再从首位置开始每次都要查找后继节点,相对来说是比较耗时的。

此外,跳表实现起来很容易且易读,红黑树实现起来相对困难,所以Redis选择使用跳表来实现有序集合。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容