不停服! 怎么迁移数据

原文

前言

数据迁移时, 为了保证数据的一致性, 往往伴随着停服, 此期间无法给用户提供服务或只能提供部分服务. 同时, 为了确保迁移后业务及数据的正确性, 迁移后测试工作也要占用不少时间. 如此造成的损失是比较大的。

接下来, 本文将就如何在不停服的情况下进行数据迁移进行探讨。

案例

订单系统中存在这样一组订单表:

数据库: MySQL
表名: order_{0~19}, 其中{0~19}为后缀, 合共20张表.
主键: order_id, 订单ID, 通过雪花算法获得, 可通过ID获取创建时间.
原分表策略: order_id % 20

伴随着业务量增长, 各分表的数据量已经破千万, 如此下去会产生严重的性能问题, 此时需要将原分表进行迁移.

要求:

  1. 将原20张分表数据迁移至新表
  2. 迁移全过程中不可停机, 须对外提供完整的服务.
  3. 提供完备的回退方案, 迁移过程中产生的数据不可丢, 不能人为修数据。


    原分表策略

分析

分析一下原分表策略存在问题: 订单数据肯定会伴随着时间和业务量直线上升, 固定的分表数量会导致随数据量增大性能下降. 所以, 数据迁移后, 分表的数量不能再固定, 即使从20改成100个总有一天也会达到瓶颈。

订单数据会伴随时间增长, 而且在超过退款期限后就变成了冷数据, 使用率会降低. 因此, 将订单按照创建时间来进行分表是一个不错的选择. 值得一提的是, order_id是通过雪花算法获得, 可以从order_id中获取创建时间, 可以通过order_id直接获取分片键。

新分表策略

迁移方案分析

数据迁移的方案从业务层数据库层各有不同的迁移方案, 我们先列举一些进行比对:

  1. 业务层: 在业务层进行硬编码, 数据双写, 以某个时间点进行划分, 新产生的数据同时写入新表, 运行一段时间后将旧数据迁移至新表. 成本极高, 与业务耦合严重, 不考虑.

  2. 连接层: 是方案1的进阶版, 在连接层拦截SQL进行双写, 与业务解耦, 但与1有着同样的一个问题: 周期较长, 要确保旧数据不会产生变更才能进行迁移.

  3. 触发器:通过触发器将新产生的数据同步到新表, 本质上与2差不多.

  4. 数据库日志: 从某一时间点T备份数据库, 将备份库的数据迁移至新表, 从时间点T读取日志, 恢复到新表, 并持续写入. 待两份数据保持同步后, 上线新代码.

  5. 伪装从库: 相对于方案4的优势是不需要直接去读取日志, 解决了数据库在云上不方便直接读取日志的问题.

相比较之下, 方案4和5都是可选的, 因数据库在云上, 直接读取日志不方便, 且方案5有成熟的开源中间件canal可用, 故笔者选择了方案5.

Canal文档地址: github.com/alibaba/can…

迁移

回退方案分析

新代码上线后, 谁也不能确保百分百没问题. 若迁移失败, 必须要进行回滚. 所以, 需要保证原数据和新数据的同步.
所以, 在前一小节方案5的基础上, 切流量到新集群后, 我们停止数据同步, 从切流量时刻开始同步新表数据到旧表, 方案也是伪装从库. 如此就能保证新旧表的数据同步, 如果上线后发生了异常, 将流量切回旧集群即可.

整体方案设计

备份源数据

  1. 执行flush logs: 生成新的binlog, 恢复数据将从这里开始.
  2. 备份数据表(order_{0~19}): 将源(旧)数据表从主库A复制到备份库B


    备份源数据

恢复并同步数据

  1. 在主库A创建足够的新表, order新表按照月进行分表.
  2. 写脚本读取备份库B中的order表, 写入主库A的order新表.
  3. 通过canal开始同步旧表数据到新表, 命名为[同步过程-a].


    同步

上线

  1. 编译新代码并弹一个新的集群, 确认完全启动完成.
  2. 执行flush logs生成新的binlog, 新表向旧表同步数据将从这里开始.
  3. 流量切到新集群.
  4. 停止[同步过程-a].
  5. 开始从新表向旧表同步数据.

回退

上线后应及时进行测试, 一旦发现严重的异常就立即将流量切回旧集群.

结语

  • flash logs要先于备份源数据表, 即使中间有些许时间间隔也不会影响数据的最终一致 (听binlog的总没错).
  • 数据无价, 谨慎操作.

如果这篇文章对您有帮助,请点个赞吧 ( ̄▽ ̄)"

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容

  • ORA-00001: 违反唯一约束条件 (.) 错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。 O...
    我想起个好名字阅读 5,266评论 0 9
  • feisky云计算、虚拟化与Linux技术笔记posts - 1014, comments - 298, trac...
    不排版阅读 3,837评论 0 5
  • Sharding的基本思想其实就是采用分治的思想,要把一个数据库切分成多个部分放到不同的数据库(server)上,...
    jiangmo阅读 9,388评论 0 7
  • 虽然不能恢复百分百,至少能将损失降到最低。 有个问题测试: 主从同步时,主库网络断开,binlog dump线程...
    kun_zhang阅读 3,033评论 0 6
  • 知道明月村也是看很多旅行网站的推荐,离成都很近,只有一个多小时的车程,可以采茶,有明月松间照。有一次看到这里的呆住...