摩尔定律的尽头 1

摩尔定律的传统定义是: 半导体芯片上的晶体管密度,平均每 18-24个月翻一番.

它最初于1965年四月被芯片公司英特尔的创始人 戈登*摩尔 (Gordon Moore) 在一篇名叫 "把更多零件塞到集成电路里" (Cramming more components into Integrated Circuit) 的论文中提出.

2013 年八月,曾就职于英特尔任总设计师的 Bob Colwell 在芝加哥的一个行业会议上宣称: 芯片行业的摩尔定律要终结了.

"从计划的时段来看,我认为 2020年可能是摩尔定律最早的终结时间. 你也许可以说服我拖到 2022年, 但不管它 (栅长, 晶体栅极的最小线宽)是到 7 纳米, 或者 5 纳米,这 (摩尔定律的终结) 是一件大事.  "  ( 普通人的头发直径大约 75000 纳米)

Colwell, 不是第一个, 也不是最后一个,预测摩尔定律即将终结的人.

摩尔本人, 曾在1995年预测, 摩尔定律将于 2005年终结.

2015年, 摩尔本人, 再次预测, 摩尔定律将于 2025年终结.

最近的关于摩尔定律终结的各种预测, 最主要的理由,是到2025年之前,如果栅长缩小到只有 3纳米,其长度只相当于十个原子的大小. 在这个尺度,电子的行为方式将进入量子力学测不准原理的领域,晶体管可靠性将完全无法保证. 另外在这个尺度,晶体管的散热和芯片的生产成本控制,看起来也是无法逾越的技术挑战.

摩尔定律真的会终结吗?

如果会,是不是意味着科技发展将停滞不前,人类一起在地球上混吃等死?

如果不会,它对未来人类文明的进步,又意味着什么?

    (2)

在展望未来之前,非常有必要回顾一下摩尔定律过去五十年的演变.

摩尔最初在1965年论文中提出的晶体管密度的概念,不是芯片上最多可以安放多少晶体管,而是从生产成本角度看,晶体管数目的最优值.

生产芯片时,增加晶体管数目一般会降低晶体管的单位成本.但是数目超过一个临界点,芯片生产出现瑕疵的几率增加,开始抵消密度增加的好处.集成电路的设计和生产,最终都是要寻求一个最优点.

摩尔在 1965年的预测, 是十年内,晶体管的密度,每年都会翻番.到1975年,一个芯片上的晶体管数目,将从 1965年的 64个增加到 1975年的65000 个.

后来英特尔在1975年生产的一个内存芯片 (面积为四分之一平方英寸, 折合约 161 平方毫米) 的晶体管数目达到 32000 个, 和摩尔的最初预测非常接近.

1975年摩尔在一篇论文中总结了前十年芯片密度增加的主要原因:

1.晶体管小型化

2.芯片面积增加

3. 新的设计技巧提高空间的利用率.

但是空间利用率的提高终归有限,所以摩尔在1975年修正了他的预测,把晶体管密度的增速,从每年翻番变成每两年翻一番.

以内存芯片为例, 2000 年的 DRAM, 204 平方毫米的面积上有 256,000, 000 个晶体管. 和 1975年相比, 晶体管密度 25年增加了 6300 倍. (如果按照摩尔定律两年翻一番的速度, 25年是增加 5800 倍左右, 基本上比较接近)

相应芯片的存储容量则从 0.001 Mb 增加到 256 Mb, 扩大了二十五万倍.

传统工程设计上, 往往需要权衡多种因素的利弊. 但在相当长一段时间内, 晶体管小型化在实践上不仅增加密度,而且使晶体管速度更快,能耗更低,不需要担心其它因素的限制.

平均每两年换一代的芯片生产技术,栅长缩小30% (x 0.7) ,相应的晶体管密度翻番,晶体管之间的延迟缩短30%, 导致相应的时钟频率增加40%,晶体管的电压减少30%, 单位能耗则减少50%. 由于晶体管整体数目翻番,所以整体能耗不变,但电路整体快了 40%.

但是到了本世纪初,晶体管的小型化遇到了瓶颈, 当栅长低于100纳米以后,晶体管漏电的问题变得严重,成了一个不可忽视的问题.

(

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容