简单线性回归分析

使用包basicTrendline。

安装包

install.packages("basicTrendline")

查看已经安装的包

installed.packages("basicTrendline")

调用包

library("basicTrendline")

载入数据

mydata<-read.table("C:/Users/Administrator/Desktop/11.csv",sep=",")

为了方便调用,使用attach方法

attach(mydata)

线性回归

lm.model<-lm(V2~V1+1) #有截距的形式
summary(lm.model) #查看模型
lm.model<-lm(V2~V1-1) #没有截距的形式,即y=ax+b中,b=0
summary(lm.model) #查看模型

结果

Call:
lm(formula = V2 ~ V1 - 1)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7126 -0.6409 -0.2093  0.4317  4.4799 

Coefficients:
    Estimate Std. Error t value Pr(>|t|)    
V1 0.1710027  0.0001303    1312   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8798 on 1199 degrees of freedom
Multiple R-squared:  0.9993,    Adjusted R-squared:  0.9993 
F-statistic: 1.722e+06 on 1 and 1199 DF,  p-value: < 2.2e-16

使用basicTrendline包的回归拟合

  • 这里不能自定义。(或者说还不会)
trendline(x, y, model="line2P", ePos.x = "topleft", summary=TRUE, eDigit=5) #自动添加95%置信区间lines and fill color
image.png
trendline(V1, V2, model="line3P", CI.fill = FALSE, CI.color = "black", CI.lty = 2, linecolor = "blue") #只添加95%置信区间的lines,不fill color (set CI.fill = FALSE)
image.png
trendline(V1, V2, model="log2P", ePos.x= "top", linecolor = "red", CI.color = NA) #只绘制回归曲线,不添加95%置信区间 (set CI.color = NA)
image.png
trendline(V1, V2, model="line3P", show.equation = TRUE, show.Rpvalue = FALSE)  #显示方程,不显示R值和P值 (set show.Rpvalue = FALSE)
image.png
trendline(V1, V2, model="line3P", xname="a", yname=paste(beta^15,b), yhat=FALSE, Rname=1, Pname=0, ePos.x = "bottom") #自定义方程中的参数的名称:‘xname’, ‘yname’, ‘yhat’, ‘Rname’, ‘Pname’
image.png
trendline(V1, V2, model="power2P", ePos.x = "topleft", summary=TRUE, eDigit = 3, eSize = 1.4, text.col = "blue") #改变方程的 小数位,字体颜色,字号大小
image.png
trendline(V1, V2, model="power2P",ePos.x = NA) #不显示方程,只显示回归曲线 (set ePos.x = NA)
image.png
#设置绘图区大小
par(mgp=c(1.5,0.4,0), mar=c(3,3,1,1), tck=-0.01, cex.axis=0.9)
trendline(V1, V2)
image.png
  • R语言中多使用数据框这种数据结构
  • R语言中\代表转义符,/代表文件夹地址。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容