《DNK210使用指南 -CanMV版 V1.0》第四十六章 车牌识别实验

第四十六章 车牌识别实验

在上一章节中,介绍了利用maix.KPU模块实现了通过提取图像中人脸的特征进行人脸识别,本章将继续介绍利用maix.KPU模块实现的车牌识别。通过本章的学习,读者将学习到车牌识别应用在CanMV上的实现。

本章分为如下几个小节:

46.1 maix.KPU模块介绍

46.2 硬件设计

46.3 程序设计

46.4 运行验证

46.1 maix.KPU模块介绍

有关maix.KPU模块的介绍,请见第39.1小节《maix.KPU模块介绍》。

46.2 硬件设计

46.2.1 例程功能

1. 获取摄像头输出的图像,并送入KPU进行车牌检测,接着对检测到的车牌分别进行车牌号识别,然后在LCD上显示检测到的车牌位置和识别出的车牌号码。

46.2.2 硬件资源

本章实验内容,主要讲解maix.KPU模块的使用,无需关注硬件资源。

46.2.3 原理图

本章实验内容,主要讲解maix.KPU模块的使用,无需关注原理图。

46.3 程序设计

46.3.1 maix.KPU模块介绍

有关maix.KPU模块的介绍,请见第46.1小节《maix.KPU模块介绍》。

46.3.2 程序流程图

图46.3.2.1 人脸识别实验流程图

46.3.3 main.py代码

main.py中的脚本代码如下所示:

import lcd

import sensor

import gc

from maix import KPU

lcd.init()

sensor.reset()

sensor.set_framesize(sensor.QVGA)

sensor.set_pixformat(sensor.RGB565)

sensor.set_hmirror(False)

anchor = (8.30891522166988, 2.75630994889035, 5.18609903718768, 1.7863757404970702, 6.91480529053198, 3.825771881004435, 10.218567655549439, 3.69476690620971, 6.4088204258368195, 2.38813526350986)

names = []

# 构造并初始化车牌检测KPU对象

lp_detecter = KPU()

lp_detecter.load_kmodel('/sd/KPU/lp_detect.kmodel')

lp_detecter.init_yolo2(anchor, anchor_num=len(anchor) // 2, img_w=320, img_h=240, net_w=320, net_h=240, layer_w=20, layer_h=15, threshold=0.7, nms_value=0.3, classes=len(names))

provinces = ['Wan', 'Hu', 'Jin', 'Yu^', 'Ji', 'Sx', 'Meng', 'Liao', 'Jl', 'Hei', 'Su', 'Zhe', 'Jing', 'Min', 'Gan', 'Lu', 'Yu', 'E^', 'Xiang', 'Yue', 'Gui^', 'Qiong', 'Cuan', 'Gui', 'Yun', 'Zang', 'Shan', 'Gan^', 'Qing', 'Ning', 'Xin']

ads = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

# 构造并初始化车牌识别KPU对象

lp_recognizer = KPU()

lp_recognizer.load_kmodel("/sd/KPU/lp_recog.kmodel")

lp_recognizer.lp_recog_load_weight_data("/sd/KPU/lp_weight.bin")

# 按指定比例扩展矩形框

def extend_box(x, y, w, h, scale):

    x1 = int(x - scale * w)

    x2 = int(x + w - 1 + scale * w)

    y1 = int(y - scale * h)

    y2 = int(y + h - 1 + scale * h)

    x1 = x1 if x1 > 0 else 0

    x2 = x2 if x2 < (320 - 1) else (320 - 1)

    y1 = y1 if y1 > 0 else 0

    y2 = y2 if y2 < (240 - 1) else (240 - 1)

    return x1, y1, x2 - x1 + 1, y2 - y1 + 1

while True:

    img= sensor.snapshot()

   lp_detecter.run_with_output(img)

    lps= lp_detecter.regionlayer_yolo2()

    for lp in lps:

       # 框出车牌位置

       x, y, w, h = extend_box(lp[0], lp[1], lp[2], lp[3], 0.08)

       img.draw_rectangle(x, y, w, h, color=(0, 255, 0))

       # 对车牌进行车牌识别并绘制识别结果

       lp = []

       lp_img = img.cut(x, y, w, h)

       resize_img = lp_img.resize(208, 64)

       resize_img.replace(hmirror=True)

       resize_img.pix_to_ai()

       lp_recognizer.run_with_output(resize_img)

       output = lp_recognizer.lp_recog()

       for o in output:

           lp.append(o.index(max(o)))

       img.draw_string(x + 2, y - 20 - 2, '%s %s-%s%s%s%s%s' %(provinces[lp[0]], ads[lp[1]], ads[lp[2]], ads[lp[3]], ads[lp[4]], ads[lp[5]], ads[lp[6]]), color=(255, 0, 0), scale=2)

       del lp

       del lp_img

       del resize_img

    lcd.display(img)

    gc.collect()

可以看到一开始是先初始化了LCD和摄像头,并分别构造并初始化了用于车牌检测和车牌号识别的KPU对象。

然后便是在一个循环中不断地获取摄像头输出的图像,首先将图像进行车牌检测,检测图像中存在的车牌,接着对车牌图像进行车牌号识别,最后将检测到的车牌位置框和识别出的车牌号码在图像上进行绘制,然后在LCD上显示图像。

46.4 运行验证

将DNK210开发板连接CanMV IDE,点击CanMV IDE上的“开始(运行脚本)”按钮后,将摄像头对准车牌,让其采集到车牌图像,可以看到LCD上显示了车牌识别的结果,图像中的被检测到的车牌均被框出,并且显示了车牌对应识别出的车牌号码,如下图所示:

图46.4.1 LCD显示车牌识别实验结果
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容