林轩田机器学习基石课程 - PLA算法 python实现

作业1:计算

Q1. Implement a version of PLA by visiting examples in the naive cycle using the order of examples in the data set.
Run the algorithm on the data set.
What is the number of updates before the algorithm halts?

       def pla_1(self, X, Y):
        """
        统计迭代次数
        :param X: 特征集
        :param Y: 标签集
        :return: 返回迭代次数
        """
        # w权重初始化, 默认设置成与X唯独一样的零法向量
        W = np.zeros(X.shape[1])

        # PLA iteration
        halt = 0  # number of iteration before halt
        for i in range(X.shape[0]):  # 遍历所有所有X
            score = np.dot(X[i, :], W)  # 计算X与w的乘积
            if score * Y[i] <= 0:  # 出现错误,即 y*X <= 0的时候
                W = W + np.dot(X[i, :].T, Y[i])  # 重置W权重
                halt = halt + 1  # 增加迭代的次数

        return halt

作业2:

Q2. Implement a version of PLA by visiting examples in fixed, pre-determined random cycles throughout the algorithm.
Run the algorithm on the data set. Please repeat your experiment for 2000 times, each with a different random seed.
What is the average number of updates before the algorithm halts?
Plot a histogram ( https://en.wikipedia.org/wiki/Histogram ) to show the number of updates versus frequency.

    def pla_2(self, X, Y):
        """
        在pla_2的基础上统计 平均迭代的次数
        :param X: 特征集
        :param Y: 标签集
        :return: 平均迭代次数和准确率
        """
        Iteration = 2000  # 设置最大的迭代次数
        Halts = []  # list store halt every iteration
        Accuracys = []  # list store accuracy every iteration

        for iter in range(Iteration):
            np.random.seed(iter)  # set random seed, different by iteration

            # 随机选取一个点
            permutation = np.random.permutation(X.shape[0])  # random select index
            X = X[permutation]  # random order X
            Y = Y[permutation]  # random order Y, as the same as X

            # 与 pla_1 的功能一样,遍历X, 更新w权重和统计迭代次数
            W = np.zeros(X.shape[1])  # weights initialization
            halt = 0  # number of iteration before halt
            for i in range(X.shape[0]):
                score = np.dot(X[i, :], W)  # score
                if score * Y[i] <= 0:  # classification error
                    W = W + np.dot(X[i, :].T, Y[i])
                    halt = halt + 1

            # 设置Y标签,如果大于0置1,小于0置-1
            Y_pred = np.dot(X, W)
            Y_pred[Y_pred > 0] = 1
            Y_pred[Y_pred < 0] = -1
            accuracy = np.mean(Y_pred == Y)

            # store Halts & Accuracys
            Halts.append(halt)
            Accuracys.append(accuracy)

        # mean
        halt_mean = np.mean(Halts)
        accuracy_mean = np.mean(Accuracys)

        return halt_mean, accuracy_mean

作业3:

Q3. Implement a version of PLA by visiting examples in fixed, pre-determined random cycles throughout the algorithm, while changing the update rule to be:
Wt+1→Wt+ηyn(t)xn(t) with η=0.5η=0.5 . Note that your PLA in the previous problem corresponds to η=1η=1 .
Please repeat your experiment for 2000 times, each with a different random seed. What is the average number of updates before the algorithm halts?
Plot a histogram to show the number of updates versus frequency. Compare your result to the previous problem and briefly discuss your findings.


    def pla_3(self, X, Y):

        Iteration = 2000  # number of iteration
        Halts = []  # list store halt every iteration
        Accuracys = []  # list store accuracy every iteration

        for iter in range(Iteration):
            np.random.seed(iter)  # set random seed, different by iteration
            permutation = np.random.permutation(X.shape[0])  # random select index
            X = X[permutation]  # random order X_data
            Y = Y[permutation]  # random order Y_data, as the same as X_data

            # look through the entire data set
            W = np.zeros(X.shape[1])  # weights initialization
            halt = 0  # number of iteration before halt
            for i in range(X.shape[0]):
                score = np.dot(X[i, :], W)  # score
                if score * Y[i] <= 0:  # classification error
                    W = W + 0.5 * np.dot(X[i, :].T, Y[i])
                    halt = halt + 1

            # accuracy
            Y_pred = np.dot(X, W)
            Y_pred[Y_pred > 0] = 1
            Y_pred[Y_pred < 0] = -1
            accuracy = np.mean(Y_pred == Y)

            # store Halts & Accuracys
            Halts.append(halt)
            Accuracys.append(accuracy)

        # mean
        halt_mean = np.mean(Halts)
        accuracy_mean = np.mean(Accuracys)
        return halt_mean, accuracy_mean
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容