林轩田机器学习基石课程笔记2 - 学习回答Yes/No

上节课,我们主要简述了机器学习的定义及其重要性,并用流程图的形式介绍了机器学习的整个过程:根据模型H,使用演算法 A,在训练样本 D 上进行训练,得到最好的 h,其对应的 g 就是我们最后需要的机器学习的模型函数,一般 g 接近于目标函数 f。本节课将继续深入探讨机器学习问题,介绍感知机Perceptron模型,并推导课程的第一个机器学习算法:Perceptron Learning Algorithm(PLA)

主要的视频讲解:
林轩田机器学习基石 P6
林轩田机器学习基石 P7
林轩田机器学习基石 P8
林轩田机器学习基石 P9

一 Perceptron Hypothesis Set

引入这样一个例子:某银行要根据用户的年龄、性别、年收入等情况来判断是否给该用户发信用卡。现在有训练样本 D,即之前用户的信息和是否发了信用卡。这是一个典型的机器学习问题,我们要根据 D,通过 A,在H中选择最好的 h,得到 g,接近目标函数 f,也就是根据先验知识建立是否给用户发信用卡的模型。银行用这个模型对以后用户进行判断:发信用卡(+1),不发信用卡(-1)。

在这个机器学习的整个流程中,有一个部分非常重要:就是模型选择,即 Hypothesis Set。选择什么样的模型,很大程度上会影响机器学习的效果和表现。下面介绍一个简单常用的 Hypothesis Set:感知机(Perceptron)。

还是刚才银行是否给用户发信用卡的例子,我们把用户的个人信息作为特征向量x,令总共有d个特征,每个特征赋予不同的权重w,表示该特征对输出(是否发信用卡)的影响有多大。那所有特征的加权和的值与一个设定的阈值threshold进行比较:大于这个阈值,输出为+1,即发信用卡;小于这个阈值,输出为-1,即不发信用卡。感知机模型,就是当特征加权和与阈值的差大于或等于0,则输出 h(x)=1;当特征加权和与阈值的差小于0,则输出 h(x)=-1,而我们的目的就是计算出所有权值w和阈值threshold。

在这里插入图片描述

为了计算方便,通常我们将阈值threshold当做 w_0,引入一个 x_0=1 的量与 w_0 相乘,这样就把threshold也转变成了权值 w_0,简化了计算。h(x)的表达式做如下变换:

在这里插入图片描述

为了更清晰地说明感知机模型,我们假设Perceptrons在二维平面上,即 h(x)=sign(w_0+w_1x_1+w_2x_2)。其中,w_0+w_1x_1+w_2x_2=0 是平面上一条分类直线,直线一侧是正类(+1),直线另一侧是负类(-1)。权重w不同,对应于平面上不同的直线。

在这里插入图片描述

那么,我们所说的Perceptron,在这个模型上就是一条直线,称之为linear(binary) classifiers。注意一下,感知器线性分类不限定在二维空间中,在3D中,线性分类用平面表示,在更高维度中,线性分类用超平面表示,即只要是形如w^TxwTx的线性模型就都属于linear(binary) classifiers。

同时,需要注意的是,这里所说的linear(binary) classifiers是用简单的感知器模型建立的,线性分类问题还可以使用logistic regression来解决,后面将会介绍。

二 Perceptron Learning Algorithm(PLA)

根据上一部分的介绍,我们已经知道了hypothesis set由许多条直线构成。接下来,我们的目的就是如何设计一个演算法A,来选择一个最好的直线,能将平面上所有的正类和负类完全分开,也就是找到最好的g,使 g\approx f

如何找到这样一条最好的直线呢?我们可以使用逐点修正的思想,首先在平面上随意取一条直线,看看哪些点分类错误。然后开始对第一个错误点就行修正,即变换直线的位置,使这个错误点变成分类正确的点。接着,再对第二个、第三个等所有的错误分类点就行直线纠正,直到所有的点都完全分类正确了,就得到了最好的直线。这种“逐步修正”,就是PLA思想所在。

在这里插入图片描述

下面介绍一下PLA是怎么做的。首先随机选择一条直线进行分类。然后找到第一个分类错误的点,如果这个点表示正类,被误分为负类,即 w_t^Tx_{n(t)} < 0,那表示w和x夹角大于90度,其中w是直线的法向量。所以,x被误分在直线的下侧(相对于法向量,法向量的方向即为正类所在的一侧),修正的方法就是使w和x夹角小于90度。通常做法是 w\leftarrow w+yx,\ y=1,如图右上角所示,一次或多次更新后的w+yxx夹角小于90度,能保证x位于直线的上侧,则对误分为负类的错误点完成了直线修正。

同理,如果是误分为正类的点,即w_t^Tx_{n(t)}>0wtTxn(t)>0,那表示w和x夹角小于90度,其中w是直线的法向量。所以,x被误分在直线的上侧,修正的方法就是使w和x夹角大于90度。通常做法是w\leftarrow w+yx,\ y=-1w←w+yx, y=−1,如图右下角所示,一次或多次更新后的w+yxw+yx与x夹角大于90度,能保证x位于直线的下侧,则对误分为正类的错误点也完成了直线修正。

按照这种思想,遇到个错误点就进行修正,不断迭代。要注意一点:每次修正直线,可能使之前分类正确的点变成错误点,这是可能发生的。但是没关系,不断迭代,不断修正,最终会将所有点完全正确分类(PLA前提是线性可分的)。这种做法的思想是“知错能改”,有句话形容它:“A fault confessed is half redressed.”

实际操作中,可以一个点一个点地遍历,发现分类错误的点就进行修正,直到所有点全部分类正确。这种被称为Cyclic PLA。

在这里插入图片描述

下面用图解的形式来介绍PLA的修正过程:

img

img

img

img

img

img

img

img

img

img

img

对PLA,我们需要考虑以下两个问题:

  • PLA迭代一定会停下来吗?如果线性不可分怎么办?

  • PLA停下来的时候,是否能保证 f\approx g ? 如果没有停下来,是否有 f\approx g

三 Guarantee of PLA

PLA什么时候会停下来呢?根据PLA的定义,当找到一条直线,能将所有平面上的点都分类正确,那么PLA就停止了。要达到这个终止条件,就必须保证 D 是线性可分(linear separable)。如果是非线性可分的,那么,PLA就不会停止。

img

对于线性可分的情况,如果有这样一条直线,能够将正类和负类完全分开,令这时候的目标权重为 w_f ,则对每个点,必然满足 y_n=sign(w_f^Tx_n) ,即对任一点:

img

PLA会对每次错误的点进行修正,更新权重 w_{t+1} 的值,如果 w_{t+1}w_f 越来越接近,数学运算上就是内积越大,那表示 w_{t+1} 是在接近目标权重 w_f ,证明PLA是有学习效果的。所以,我们来计算 w_{t+1}w_f 的内积:

img

从推导可以看出,w_{t+1}w_f 的内积跟 w_tw_f 的内积相比更大了。似乎说明了 w_{t+1} 更接近 w_f ,但是内积更大,可能是向量长度更大了,不一定是向量间角度更小。所以,下一步,我们还需要证明 w_{t+1}w_t 向量长度的关系:

img

w_t 只会在分类错误的情况下更新,最终得到的 ||w_{t+1}^2|| 相比 ||w_{t}^2|| 的增量值不超过 max||x_n^2|| 。也就是说,w_t 的增长被限制了,w_{t+1}w_t 向量长度不会差别太大!

如果令初始权值w_0=0 ,那么经过T次错误修正后,有如下结论:

\frac{w_f^T}{||w_f||}\frac{w_T}{w_T}\geq \sqrt T\cdot constant

下面贴出来该结论的具体推导过程:

img

img

上述不等式左边其实是 w_Tw_f夹角的余弦值,随着 T 增大,该余弦值越来越接近1,即 w_Tw_f 越来越接近。同时,需要注意的是,\sqrt T\cdot constant\leq 1 ,也就是说,迭代次数 T 是有上界的。根据以上证明,我们最终得到的结论是: w_{t+1}w_f 的是随着迭代次数增加,逐渐接近的。而且,PLA最终会停下来(因为T有上界),实现对线性可分的数据集完全分类。

四 Non-Separable Data

上一部分,我们证明了线性可分的情况下,PLA是可以停下来并正确分类的,但对于非线性可分的情况,w_f 实际上并不存在,那么之前的推导并不成立,PLA不一定会停下来。所以,PLA虽然实现简单,但也有缺点:

img

对于非线性可分的情况,我们可以把它当成是数据集D中掺杂了一下noise,事实上,大多数情况下我们遇到的D,都或多或少地掺杂了noise。这时,机器学习流程是这样的:

img

在非线性情况下,我们可以把条件放松,即不苛求每个点都分类正确,而是容忍有错误点,取错误点的个数最少时的权重w:

img

事实证明,上面的解是NP-hard问题,难以求解。然而,我们可以对在线性可分类型中表现很好的PLA做个修改,把它应用到非线性可分类型中,获得近似最好的g。

修改后的PLA称为Packet Algorithm。它的算法流程与PLA基本类似,首先初始化权重 w_0,计算出在这条初始化的直线中,分类错误点的个数。然后对错误点进行修正,更新w,得到一条新的直线,在计算其对应的分类错误的点的个数,并与之前错误点个数比较,取个数较小的直线作为我们当前选择的分类直线。之后,再经过 n 次迭代,不断比较当前分类错误点个数与之前最少的错误点个数比较,选择最小的值保存。直到迭代次数完成后,选取个数最少的直线对应的w,即为我们最终想要得到的权重值。

img

如何判断数据集 D 是不是线性可分?对于二维数据来说,通常还是通过肉眼观察来判断的。一般情况下,Pocket Algorithm要比PLA速度慢一些。

五 总结

本节课主要介绍了线性感知机模型,以及解决这类感知机分类问题的简单算法:PLA。我们详细证明了对于线性可分问题,PLA可以停下来并实现完全正确分类。对于不是线性可分的问题,可以使用PLA的修正算法Pocket Algorithm来解决。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容