m基于Simulink的自适应模糊控制器设计与仿真实现

1.算法仿真效果

matlab2022a仿真结果如下:


2.算法涉及理论知识概要

模糊自适应控制器同时结合自适应控制和模糊控制,形成具有自适应的功能的控制系统。模糊自适应控制不要求控制对象具有精确的数学模型,并且还巧妙的引入了自适应律以方便实时的去学习被控对象所具有的各种动态特性,然后再根据动态特性的实时变化来自动更新和修改以及在线实时调整对应的模糊控制器,这样就使得系统在出现各种各样的不确定因素的时候,控制器的控制效果仍然可以保持一致以及具有良好的鲁棒性。

模糊自适应控制器的基本框架如图1所示。从图1可以看出,在自适应模糊控制的过程中,自适应规则的设计是依据控制性能指标来设计的,随着环境的变化自适应律不断用来修正模糊控制器中的参数。而在非自适应模糊控制系统,模糊控制器是事先已经设计好的,控制器的参数不依控制性能而改变,这就可能导致控制失效。因此,自适应模糊控制具有较好的控制性能。

整个系统的完整结构为:


那么系统的自适应模糊控制模块可以简化为如下的结构:


只不过模糊输入的三个变量都是通过输出反馈得到的数据,从而构成自适应反馈系统。


模糊自适应PID控制是在PID算法的基础上,以误差e和误差变化率ec作为输入,利用模糊规则进行模糊推理,查询模糊矩阵表进行参数调整,来满足不同时刻的e和ec对PID参数自整定的要求。PID控制有着原理简单,使用方便,适应性强的特点,同时具有制时精度低、抗干扰能力差等缺点,模糊自适应PID控制是在PID算法的基础上,以误差E 和误差变化率EC作为输入,利用模糊规则进行模糊推理,查询模糊矩阵表进行参数调整,来满足不同时刻的E和EC对PID参数自整定的要求.


3.MATLAB核心程序



clc;

close all;


%首先在m文件中画出 p1,p2,p3,p4,p5,p6;

p0=[0    0];

p1=[1000 0];

p2=[1000 2000];

p3=[3000 2500];

p4=[4000 2000];

p5=[4000 0];

p6=[2000 -1000];

x=[p0(1) p1(1) p2(1) p3(1) p4(1) p5(1) p6(1)];

y=[p0(2) p1(2) p2(2) p3(2) p4(2) p5(2) p6(2)];



load x3.mat

load y3.mat



%直接对路经进行控制可定不可行,需要对路经的角度进行控制,然后反馈过来去控制船的路线

%计算实际的

load fai_tan.mat

load fai_tan2.mat


load x3.mat

load y3.mat




save x3.mat  x3

save y3.mat  y3

load s.mat




%控制后的录像

x0n(1)=x3(2)-150;

y0n(1)=y3(2)+20;

vn=1.19*s/length(fai_tan2);

for i = 2:length(fai_tan2)-1

x0n(i)= x0n(i-1)+vn*cos(fai_tan2(2,i-1));

y0n(i)= y0n(i-1)+vn*sin(fai_tan2(2,i-1));    

end

plot(x3,y3,'k','LineWidth',2);

axis([-1000,5500,-1000,2500]);

grid on;hold on;

title('Track keeping');

plot(x0n,y0n,'r','LineWidth',3)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容