玛尔思今日分享--《数据科学可以为企业带来什么》

导读:数据科学到底可以为企业带来怎样的收益?管理者该如何正确的利用数据科学为企业创造收益?我们从企业经营的本质出发,一起客观冷静的分析热点背后的商业机会。

01—企业的根本目的与经营本质

 讨论“数据科学”之前,让我们先来明确企业的目的与经营行为本质。

在本文中,我们遵守传统的、会计学的定义:企业的目的是盈利

在会计学中,计算利润最简单的公式为:利润 = 收入 - 成本

        因此我们也可以将企业的目的拆分为:1)提高收入;2)降低成本。

        企业的一切经营活动就是围绕着这两件事情展开的,一项经营活动要么可以直接或间接的提高收入,要么可以降低成本,除此之外都是无意义的。

02—数据科学

        数据科学是从数据中提取“知识”的科学(实际上在“数据科学”这个词变得流行起来之前,我们更多使用“知识发掘”,Knowledge Discovery)。

        上面我们提到企业经营行为的本质,是为了降低成本和提高收入而进行的一系列决策。要做出正确的决策,我们从总结过去的经验,评估当下的现状,并对未来进行预测。而知识则是这一系列步骤的基本原料。


“知识”是很笼统的字眼,在决策过程中我们需要什么样的知识?从数据科学的角度来说,有如下几项常见的知识发掘任务:分类分析、回归分析、聚类分析、时序分析和关联规则。在本文中,我只做出简单的解释:

分类分析

回归分析

聚类分析

时序分析

关联规则


03—商业应用

销售预测

        销售预测可能是数据科学家在为企业服务时最常见的任务。通过对历史销售数据的分析(时序分析),数据科学家可以为企业的销售部门提供关于未来销售业绩的具有洞见性的预测。决策者和销售人员可以进行符合逻辑的讨论,并更加合理的分配财务、人力资源。

        相比起以往基于销售人员经验进行的方法,基于数据科学的预测可以提供更为合理的预测,但更重要的是,基于数据科学的预测为决策制定者提供了量化的分析结果。当决策者与销售人员进行讨论时,他们不再基于模棱两可的经验,不再容易陷入 “凭什么?” 的无效讨论中,而是针对具体的量展开讨论并修正预测结果。

精准市场分析

        正确的使用数据科学可以帮助你理解历史数据,对比竞争产品、服务,分析市场,最终解答最重要的问题:“何时、何地、谁在购买我的产品或服务”?基于这样的市场景象描绘,决策者可以有效的对商业过程进行反思,更快的适应市场变化的趋势。

风险控制

        数据科学可以为企业有效的标注出高风险行为。无论是可能违约的供应商或客户,亦或者生产过程中可能存在的异常,数据科学手段可以在极短的时间内向决策者发出预警,让企业能够游刃有余的规避风险和矫正错误,以避免更大的损失。

具有说服力的商业计划

        数据科学亦可以被看作一种基于逻辑、数学和统计学的 “语言”。因为这样的语言的严密性和普世性,以数据科学为根基的商业计划往往比基于经验和个人魅力计划更有说服力(当然,最好的情况是以上因素都具备)。而且,基于数据的商业计划在与潜在投资人讨论时,天然具备方便修改与分析的特点。

人才管理

        通过对于历史数据的分析,数据科学可以帮助决策者了解企业当下的人力资源状况。具备哪些特征的雇员具有更高的稳定性?哪些行为预示着雇员可能对企业造成损失?这些信息可以帮助决策者更好的制定人才策略,使得企业的人力资源成本极大降低。

04—更大的世界

尽管“数据科学”作为热点词,在这些年受到了商业界的关注,但事实上除了数据科学以外还有许许多多的基于计算机科学、运筹学、统计学等学科的工具可以帮助企业更加行之有效的实现盈利目的。例如数学优化帮助企业在复杂的可选决策参数中找出最佳方案;专家系统帮助企业对 “故障” 进行诊断(这里故障不仅仅指设备故障,亦可以是商业流程或人员的异常);多 Agent 系统可以模拟复杂的市场环境和个体互动,帮助决策者理解不同的状况下市场将会如何发展。

        作为商业决策者,无论是数据科学亦或者是其他手段,都是为了企业的最终目的,亦即盈利,而服务的。决策者本身并不需要成为这些手段的专家,数据科学也好,人工智能也好,决策者需要的更多是理解它们该如何被应用到具体的企业运营事务当中并发挥作用,在适当时候合理的部署相关系统和专家。

                                                                                         (本文作者:玛尔思商学院,商业转载请注明)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容

  • 数据科学到底可以为企业带来怎样的收益?管理者该如何正确的利用数据科学为企业创造收益?我们从企业经营的本质出发,一起...
    十里的杂念阅读 400评论 0 0
  • 随着数字化管理,越来越多公司在日常运营和商业决策中引入商业智能,对于商业智能也越来越重视。那么,很多不了解商业智能...
    jiaogo王阅读 3,403评论 0 0
  • 久违的晴天,家长会。 家长大会开好到教室时,离放学已经没多少时间了。班主任说已经安排了三个家长分享经验。 放学铃声...
    飘雪儿5阅读 7,518评论 16 22
  • 今天感恩节哎,感谢一直在我身边的亲朋好友。感恩相遇!感恩不离不弃。 中午开了第一次的党会,身份的转变要...
    迷月闪星情阅读 10,561评论 0 11
  • 可爱进取,孤独成精。努力飞翔,天堂翱翔。战争美好,孤独进取。胆大飞翔,成就辉煌。努力进取,遥望,和谐家园。可爱游走...
    赵原野阅读 2,724评论 1 1