ArrayMap
是Android提供的一种替换HashMap
的数据结构,官方对它的介绍说ArrayMap是一种更有效率的Map结构,其原理是内部维护了两个数组,一个数组用来保存每一个key值得hash值,另一个数组用来保存key-value, 用来保存key-value的数组是保存hash值数组大小的两倍,下面这张图很好的展示了ArrayMap原理:
来源HashMap,ArrayMap,SparseArray源码分析及性能对比
成员变量
private static final int BASE_SIZE = 4;
private static final int CACHE_SIZE = 10;
static final int[] EMPTY_IMMUTABLE_INTS = new int[0];
public static final ArrayMap EMPTY = new ArrayMap<>(-1);
//缓存相关
static Object[] mBaseCache;
static int mBaseCacheSize;
static Object[] mTwiceBaseCache;
static int mTwiceBaseCacheSize;
final boolean mIdentityHashCode;
int[] mHashes;
Object[] mArray;
int mSize;
//集合操作工具类
MapCollections<K, V> mCollections;
-
mHashes
用来存放key值相对应的hash值 -
mArray
用来存放key-value, key值在2n处, value在2n+1处 - ArrayMap还加入了缓存,
mBaseCache
用来缓存容量为BASE_SIZE
的数组,mTwiceBaseCache
用来缓存容量为2 * BASE_SIZE
的数组
构造函数
public ArrayMap() {
this(0, false);
}
public ArrayMap(int capacity) {
this(capacity, false);
}
/** {@hide} */
public ArrayMap(int capacity, boolean identityHashCode) {
mIdentityHashCode = identityHashCode;
if (capacity < 0) {
mHashes = EMPTY_IMMUTABLE_INTS;
mArray = EmptyArray.OBJECT;
} else if (capacity == 0) {
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
} else {
allocArrays(capacity);
}
mSize = 0;
}
public ArrayMap(ArrayMap<K, V> map) {
this();
if (map != null) {
putAll(map);
}
}
一般情况下,在开发中我们主要使用空参构造函数和一个参数的构造函数,不过这两个构造函数都是调用了第三个hide的构造函数, 这个构造函数中主要工作就是分配数组
allocArrays
private void allocArrays(final int size) {
if (mHashes == EMPTY_IMMUTABLE_INTS) {
throw new UnsupportedOperationException("ArrayMap is immutable");
}
if (size == (BASE_SIZE*2)) {
synchronized (ArrayMap.class) {
if (mTwiceBaseCache != null) {
final Object[] array = mTwiceBaseCache;
mArray = array;
mTwiceBaseCache = (Object[])array[0];
mHashes = (int[])array[1];
array[0] = array[1] = null;
mTwiceBaseCacheSize--;
if (DEBUG) Log.d(TAG, "Retrieving 2x cache " + mHashes
+ " now have " + mTwiceBaseCacheSize + " entries");
return;
}
}
} else if (size == BASE_SIZE) {
synchronized (ArrayMap.class) {
if (mBaseCache != null) {
final Object[] array = mBaseCache;
mArray = array;
mBaseCache = (Object[])array[0];
mHashes = (int[])array[1];
//将缓存置为null
array[0] = array[1] = null;
//递减mBaseCacheSize
mBaseCacheSize--;
if (DEBUG) Log.d(TAG, "Retrieving 1x cache " + mHashes
+ " now have " + mBaseCacheSize + " entries");
return;
}
}
}
mHashes = new int[size];
mArray = new Object[size<<1];
}
从代码中可以看到,如果分配的size恰好等于4或者8, 则ArrayMap会优先在缓存中找,如果有缓存则直接使用缓存的数组,这样就避免了频繁的创建数组带来的内存消耗
方法
1. put
public V put(K key, V value) {
final int hash;
int index;
//查找key值对应的index,如果找到则为正数,否则为负数,代表了将要被插入的位置
if (key == null) {
hash = 0;
//【1.1】
index = indexOfNull();
} else {
hash = mIdentityHashCode ? System.identityHashCode(key) : key.hashCode();
index = indexOf(key, hash);
}
//已存在key值,直接覆盖为新值
if (index >= 0) {
index = (index<<1) + 1;
final V old = (V)mArray[index];
mArray[index] = value;
return old;
}
//key值并不存在,则对index取反,获取将要被插入的index
index = ~index;
if (mSize >= mHashes.length) {
//确定扩容的容量
final int n = mSize >= (BASE_SIZE*2) ? (mSize+(mSize>>1))
: (mSize >= BASE_SIZE ? (BASE_SIZE*2) : BASE_SIZE);
if (DEBUG) Log.d(TAG, "put: grow from " + mHashes.length + " to " + n);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
//重新分配数组,如果满足缓存条件,使用缓存
allocArrays(n);
//迁移数组
if (mHashes.length > 0) {
if (DEBUG) Log.d(TAG, "put: copy 0-" + mSize + " to 0");
System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length);
System.arraycopy(oarray, 0, mArray, 0, oarray.length);
}
//释放之前的数组,如果之前的数组满足缓存条件,则将数组缓存起来, 【1.2】
freeArrays(ohashes, oarray, mSize);
}
//插入数据
if (index < mSize) {
if (DEBUG) Log.d(TAG, "put: move " + index + "-" + (mSize-index)
+ " to " + (index+1));
System.arraycopy(mHashes, index, mHashes, index + 1, mSize - index);
System.arraycopy(mArray, index << 1, mArray, (index + 1) << 1, (mSize - index) << 1);
}
mHashes[index] = hash;
mArray[index<<1] = key;
mArray[(index<<1)+1] = value;
mSize++;
return null;
}
- 查找key值对应的index, 这里使用的也是二分搜索法,如果key值已存在则index为正数,否则为负数
- 如果key值已存在,直接覆盖为新值
- 如果key值不存在,对index取反
- 如果容量不够,进行扩容操作,生成新的数组,如果满足缓存条件,还会将就数组缓存起来避免频繁分配数组,之后前移现有数据到新数组
- 插入数据
1.1 indexOfNull
int indexOfNull() {
final int N = mSize;
//如果数组为空,那么什么也不做
if (N == 0) {
return ~0;
}
//二分搜索
int index = ContainerHelpers.binarySearch(mHashes, N, 0);
//index < 0 代表数组中并不存在key,直接返回
if (index < 0) {
return index;
}
//如果index处对应的key值恰好就是null, 则直接返回index
if (null == mArray[index<<1]) {
return index;
}
//从index后面找寻是否存在key为null
int end;
for (end = index + 1; end < N && mHashes[end] == 0; end++) {
if (null == mArray[end << 1]) return end;
}
//从index前面找寻是否存在key为null
for (int i = index - 1; i >= 0 && mHashes[i] == 0; i--) {
if (null == mArray[i << 1]) return i;
}
//都没找到,返回将要被插入的索引位置的负数
return ~end;
}
indexOf
的实现与indexOfNull
基本一样,只不过indexOfNull
是判断key值是否等于null
1.2 freeArrays
private static void freeArrays(final int[] hashes, final Object[] array, final int size) {
if (hashes.length == (BASE_SIZE*2)) {
synchronized (ArrayMap.class) {
if (mTwiceBaseCacheSize < CACHE_SIZE) {
array[0] = mTwiceBaseCache;
array[1] = hashes;
for (int i=(size<<1)-1; i>=2; i--) {
array[i] = null;
}
mTwiceBaseCache = array;
mTwiceBaseCacheSize++;
if (DEBUG) Log.d(TAG, "Storing 2x cache " + array
+ " now have " + mTwiceBaseCacheSize + " entries");
}
}
} else if (hashes.length == BASE_SIZE) {
synchronized (ArrayMap.class) {
if (mBaseCacheSize < CACHE_SIZE) {
array[0] = mBaseCache;
array[1] = hashes;
for (int i=(size<<1)-1; i>=2; i--) {
array[i] = null;
}
mBaseCache = array;
mBaseCacheSize++;
if (DEBUG) Log.d(TAG, "Storing 1x cache " + array
+ " now have " + mBaseCacheSize + " entries");
}
}
}
}
CACHE_SIZE
等于10,这意味着最多缓存十个数组,当旧的数组大小等于4或者8的时候,都会被缓存
2. get
public V get(Object key) {
final int index = indexOfKey(key);
return index >= 0 ? (V)mArray[(index<<1)+1] : null;
}
get
方法非常简单,获取索引,根据索引返回对应值,就这么简单!
3. remove
public V remove(Object key) {
final int index = indexOfKey(key);
if (index >= 0) {
return removeAt(index);
}
return null;
}
public V removeAt(int index) {
final Object old = mArray[(index << 1) + 1];
if (mSize <= 1) {
freeArrays(mHashes, mArray, mSize);
mHashes = EmptyArray.INT;
mArray = EmptyArray.OBJECT;
mSize = 0;
} else {
//如果容量不到1/3降低ArrayMap容量
if (mHashes.length > (BASE_SIZE*2) && mSize < mHashes.length/3) {
//保证容量不小于BASE_SIZE * 2
final int n = mSize > (BASE_SIZE*2) ? (mSize + (mSize>>1)) : (BASE_SIZE*2);
final int[] ohashes = mHashes;
final Object[] oarray = mArray;
allocArrays(n);
mSize--;
if (index > 0) {
System.arraycopy(ohashes, 0, mHashes, 0, index);
System.arraycopy(oarray, 0, mArray, 0, index << 1);
}
if (index < mSize) {
System.arraycopy(ohashes, index + 1, mHashes, index, mSize - index);
System.arraycopy(oarray, (index + 1) << 1, mArray, index << 1,
(mSize - index) << 1);
}
} else {
mSize--;
if (index < mSize) {
//把后面的数据往前前移一位
System.arraycopy(mHashes, index + 1, mHashes, index, mSize - index);
System.arraycopy(mArray, (index + 1) << 1, mArray, index << 1,
(mSize - index) << 1);
}
mArray[mSize << 1] = null;
mArray[(mSize << 1) + 1] = null;
}
}
return (V)old;
}
remove
首先获取索引值,然后直接调用removeAt
来删除对应的值,
性能分析
ArrayMap
在确定index时,使用的也是二分查找法,其效率肯定会随着数据量的增大而受到影响,另外从代码中也可以看到,ArrayMap
中比较频繁的出现了数组迁移,这就又会造成一些性能的损失,但是如果从内存角度来看,ArrayMap
内部使用了缓存,且在删除元素后,会适当的缩小容量,减少内存占用,综合来看,如果数据量不大,且鲨如何删除操作不频繁时ArrayMap
还是比较适用