程序收集

xgb分类问题

# This script shows you how to make a submission using a few

# useful Python libraries.

# It gets a public leaderboard score of 0.76077.

# Maybe you can tweak it and do better...?

import pandas as pd

import xgboost as xgb

from sklearn.preprocessing import LabelEncoder

import numpy as np

# Load the data

train_df = pd.read_csv('./input/train.csv', header=0)

test_df = pd.read_csv('./input/test.csv', header=0)

# We'll impute missing values using the median for numeric columns and the most

# common value for string columns.

# This is based on some nice code by 'sveitser' at http://stackoverflow.com/a/25562948

from sklearn.base import TransformerMixin

class DataFrameImputer(TransformerMixin):

    def fit(self, X, y=None):

        self.fill = pd.Series([X[c].value_counts().index[0]

            if X[c].dtype == np.dtype('O') else X[c].median() for c in X],

            index=X.columns)

        return self

    def transform(self, X, y=None):

        return X.fillna(self.fill)

feature_columns_to_use = ['Pclass','Sex','Age','Fare','Parch']

nonnumeric_columns = ['Sex']

# Join the features from train and test together before imputing missing values,

# in case their distribution is slightly different

big_X = train_df[feature_columns_to_use].append(test_df[feature_columns_to_use])

big_X_imputed = DataFrameImputer().fit_transform(big_X)

# XGBoost doesn't (yet) handle categorical features automatically, so we need to change

# them to columns of integer values.

# See http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing for more

# details and options

le = LabelEncoder()

for feature in nonnumeric_columns:

    big_X_imputed[feature] = le.fit_transform(big_X_imputed[feature])

# Prepare the inputs for the model

train_X = big_X_imputed[0:train_df.shape[0]].as_matrix()

test_X = big_X_imputed[train_df.shape[0]:].as_matrix()

train_y = train_df['Survived']

# You can experiment with many other options here, using the same .fit() and .predict()

# methods; see http://scikit-learn.org

# This example uses the current build of XGBoost, from https://github.com/dmlc/xgboost

gbm = xgb.XGBClassifier(max_depth=3, n_estimators=300, learning_rate=0.05).fit(train_X, train_y)

predictions = gbm.predict(test_X)

# Kaggle needs the submission to have a certain format;

# see https://www.kaggle.com/c/titanic-gettingStarted/download/gendermodel.csv

# for an example of what it's supposed to look like.

submission = pd.DataFrame({ 'PassengerId': test_df['PassengerId'],

                            'Survived': predictions })

submission.to_csv("submission.csv", index=False)


替换

df = df.drop('column_name', 1)

where 1 is the axis number (0 for rows and 1 for columns.)

To delete the column without having to reassign df you can do:

df.drop('column_name', axis=1, inplace=True)

Finally, to drop by column number instead of by column label, try this to delete, e.g. the 1st, 2nd and 4th columns:

df.drop(df.columns[[0, 1, 3]], axis=1)  # df.columns is zero-based pd.Index

columns = ['Col1', 'Col2', ...]

df.drop(columns, inplace=True, axis=1)

This will delete one or more columns in-place. Note that inplace=True was added in pandas v0.13 and won't work on older versions, do you'd have to do assign the result back in that case:

df = df.drop(columns, axis=1)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容