对极几何(Epipolar geometry)


定义:c1为坐标原点,当作相机的起始位置

d_{1}\mu_{1}=KP
d_{2}\mu_{2}=K(RP+t)
其中\mu_1, \mu_2 为图像中的像素坐标,[R,t ] 是相机的旋转和位移矩阵,d_1,d_2对应像素坐标点的深度

当深度为1时定义归一化平面为:x_{1}=K^{-1} \mu_{1}, x_{2}=K^{-1} \mu_{2}

1.epipolar constrant

d_{1}K^{-1}\mu_{1}=P \\ d_{2}K^{-1}\mu_{2}=RP+t

d_{1}x_{1}=P \\ d_{2}x_{2}=RP+t

d_{2}x_{2}=R(d_{1}x_{1})+t
等式两边同时叉乘t:
t×d_2x_2=t×R(d_1x_1)+t× d_{2}x_{2}=t \times R(d_{1}x_{1})+t \times t

t \times d_{2}x_{2}=t \times R(d_{1}x_{1})+0
等式两边点乘x_2

x_{2}^{T}t \times d_{2}x_{2}=x_{2}^{T} t \times R(d_{1}x_{1}) \\ 0=x_{2}^{T}t \times R(d_{1}x_{1}) \\ x_{2}^{T}t^{\land} Rx_{1}=0

对极约束条件:
\mu_{2}^{T}{K^{-1}}^{T}t^{\land} R K^{-1} \mu_{1}=0

定义:

本质矩阵:E=t\times R
基础矩阵: F={K^{-1}}^{T}t^{\land} R K^{-1}

2. 求解本质矩阵

x_{2}^{T}Ex_{1}=0
设:x_{1}=[x1,y1,1] , x_{2}^{T}=[x2,y2,1]
则:
0 = [x2,y2,1]\left[ \matrix{ e_{1} & e_{2} & e_{3}\\ e_{4} & e_{5} &e_{6}\\ e_{7} & e_{8} &e_{9} } \right] \left[ \matrix {x1 \\ y1 \\1}\right]
展开:
x1x2e_{1}+y1x2e_{2}+x2e_{3}+x1y2e_{4}+y1y2e_{5}+y2e_{6}+x1e_{7}+y1e_{8}+e_{9}=0 \\

记:z^{T}=[x1x2,y1x2,x2,x1y2,y1y2,y2,x1,y1,1],e=[e_{1},e_{2},e_{3},e_{4},e_{5},e_{6},e_{7},e_{8},e_{9}]

采用8个对应点,就能解这个线性方程,采用SVD分解求的e:
z^{T}e=0

3.从本质矩阵恢复 R,t

E=t^{\land} R =U \Sigma V^T=[\mu_{0},\mu_{1},\mu_{2}] \left[ \matrix{s &0&0 \\0&s&0\\0&0&0}\right]\left[ \matrix{\nu_{0}^{T} \\\nu_{1}^{T}\\\nu_{2}^{T}}\right]

W=\left[ \matrix{0 &-1&0 \\1&0&0\\0&0&1}\right]

t^{\land} R=UW\Sigma U^{T}UW^{-1}V^{T}=U\Sigma V^{T}=E


补充:a=[\alpha_{1},\alpha_{2},\alpha_{3}],
a的反对称阵:a^{\land}=\left[\matrix{ 0&-\alpha_{3}&\alpha_{2}\\\alpha_{3}&0&-\alpha_{1}\\ -\alpha_{2} & \alpha_{1}&0}\right]


t^{\land} R=UW\Sigma U^{T}UW^{-1}V^{T}=U\Sigma V^{T}=E中:
t^{\land} = UW\Sigma U^T \\ R=UW^{-1}V^T

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容