LLaMA-Omni 低延迟高质量语音交互

前言

随着GPT-4o的发布,在语音界面的Voice-Chat越来越受到大家的关注,对于低延迟,高准确性模型的speech-to-speech的需求日益增长,来自中科院计算所NLP组的LLaMA-Omni 有效的解决了这样的需求,该模型整合了预训练的语音编码器、语音adapter、LLM和流式语音解码器,并消除了对文本输出后再语音转录的需求,能够直接从语音指令中同时生成文本和语音响应。

研究团队使用最新的Llama-3.1-8B-Instruct模型构建了Llama-3.1-8B-Omni,同时构建了一个名为“InstructS2S-200K”的数据集,其中包含20万个语音指令及其对应的语音响应。实验结果表明,相比于之前的语音语言模型,LLaMA-Omni在内容和风格上提供了更好的响应,并且具有极低的响应延迟,仅为226毫秒。此外,训练LLaMA-Omni仅需要不到3天的时间,在只有4个GPU的情况下进行,为未来高效开发语音语言模型铺平了道路。


image.png

LLaMA-Omni 主要特点和进步:

高质量问答

基于LLaMA-3.1-8B训练,LLaMA-3.1-8B是同尺寸大小的比较领先的大语言模型,来确保回应质量高

同时语音和文本响应

LLaMA-Omni 能够根据用户语音输入生成语音和文本响应(如下图)。这使其成为语音助手或交互式代理等实时应用的理想选择。响应是同时生成的,无需繁琐的中间转录步骤,从而提高了对话的速度和流畅度。

image.png

低延迟

LLaMA-Omni 最令人印象深刻的功能是低延迟,其响应时间低至226 毫秒。这使其成为目前最快的语音对语音交互模型之一,可确保用户体验近乎即时的反馈。和传统的方式不同之处在于输出的时候不是先输出完文本再把文本转换成语音,而是流式的边输出文本边输出语音,类似人的同声传译,大幅度降低了延迟。

高效训练

LLaMA-Omni 不仅延迟低,开发效率也高,训练LLaMA-Omni仅需要不到3天的时间,在只有4个GPU的情况下进行,为未来高效开发语音语言模型铺平了道路,凸显了其对各类 AI 开发者和研究人员的可扩展性和可访问性。

优化数据集

构建了一个名为“InstructS2S-200K”的数据集,其中包含20万个语音指令及其对应的语音响应。此数据集确保模型高度适应处理各种语音输入并生成适当的上下文感知响应。

模型是来自modelscop的,可以参考地址,论文地址,代码仓库

模型体验

基于modelscop服务,可以在开放平台上构建自己的环境,创建空间体验连击

模型使用

下载代码

$ git clone https://github.com/ictnlp/LLaMA-Omni
$ cd LLaMA-Omni

创建空间环境

$ conda create --name llama_omni python=3.10
   .....
$ conda activate llama_omni

安装Omni包

$ pip install pip==24.0
$ pip install -e .

安装fairseq

$ git clone https://github.com/pytorch/fairseq
$ cd fairseq
$ pip install -e . --no-build-isolation

安装flash-attention

$ pip install flash-attn --no-build-isolation

模型下载

下载Llama-3.1-8B-Omni

$ modelscope download --model=ICTNLP/Llama-3.1-8B-Omni --local_dir ./Llama-3.1-8B-Omni

下载whisper-large-v3

$ wget "https://modelscope.cn/models/ai-modelscope/large-v3.pt/resolve/master/large-v3.pt" -P models/speech_encoder/

下载HiFi-GAN vocoder.

$ wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000 -P vocoder/

$ wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/config.json -P vocoder/

演示如下

  • 启动控制器
$ python -m omni_speech.serve.controller --host 0.0.0.0 --port 10000
  • 启动gradio网络服务
$ python -m omni_speech.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --model-list-mode reload --vocoder vocoder/g_00500000 --vocoder-cfg vocoder/config.json
  • 开启活动
$ python -m omni_speech.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path Llama-3.1-8B-Omni --model-name Llama-3.1-8B-Omni --s2s

注意:由于gradio中流不稳定,最好在启动之前关闭代理VPN

模型推理

要进行本地推理,请按照 omni_speech/infer/examples 目录中的格式组织语音指令文件,然后参考以下脚本。

bash omni_speech/infer/run.sh omni_speech/infer/examples

模型微调

我们使用ms-swift对Llama3.1-8B-Omni进行微调。ms-swift是魔搭社区官方提供的大模型与多模态大模型微调部署框架。

ms-swift开源地址,这里展示可运行的demo,自定义数据集可以查看这里

使用 aishell1-zh-mini 测试数据集,进行微调。微调的脚本如下:

# 默认:微调LLM和projector, 冻结vision encoder和generator
$ CUDA_VISIBLE_DEVICES=0 swift sft \
  --model_type llama3_1-8b-omni \
  --model_id_or_path ICTNLP/Llama-3.1-8B-Omni \
  --sft_type lora \
  --dataset aishell1-zh-mini#5000

# Deepspeed ZeRO2
$ NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \
  --model_type llama3_1-8b-omni \
  --model_id_or_path ICTNLP/Llama-3.1-8B-Omni \
  --sft_type lora \
  --dataset aishell1-zh-mini#5000 \
  --deepspeed default-zero2

训练显存占用:


image.png

如果要使用自定义数据集,只需按以下方式进行指定:

# val_dataset可选,如果不指定,则会从dataset中切出一部分数据集作为验证集
    --dataset train.jsonl \
    --val_dataset val.jsonl \

自定义数据集格式如下,分别代表单音频、多音频和纯文本的格式:

{"query": "<audio>55555", "response": "66666", "audios": ["audio_path"]}
{"query": "<audio><audio>eeeee", "response": "fffff", "history": [], "audios": ["audio_path1", "audio_path2"]}
{"query": "query3", "response": "response3", "history": [["query1", "response1"], ["query2", "response2"]]}

训练loss图如下:


image.png

微调后推理脚本如下,这里的ckpt_dir需要修改为训练生成的last_checkpoint文件夹。

$ CUDA_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir output/llama3_1-8b-omni/vx-xxx/checkpoint-xxx \
    --load_dataset_config true

# or merge-lora & infer
$ CUDA_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir output/llama3_1-8b-omni/vx-xxx/checkpoint-xxx \
    --load_dataset_config true --merge_lora true
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容