详谈P(查准率),R(查全率),F1值

怎么来的?

    我们平时用的精度accuracy,也就是整体的正确率

        acc = predict_right_num / predict_num

这个虽然常用,但不能满足所有任务的需求。比如,因为香蕉太多了,也不能拨开人工的一个一个的看它的好坏(我爱吃啊,想想就心疼),此时我们就需要有一种方法,代替拨开香蕉这种粗鲁的手段。这时我们需要通过一些测试,看看哪种方法能更加准确的预测。我们可以通过

    “准”:预测的准确度,就是我预测的结果中真正好的香蕉要越多越好;

    “全”:就是所有的好的香蕉预测出来的越多越好,虽然把有些坏的也预测是好的了,那也不管,“全”就行。

其实这两者都想要达到就好了,但是不行的:

    比如"准",我就预测一个算了,好的香蕉肯定比坏的比例高,也就是我只预测一个,100%比例几率最大了,这时就不“全”了,海域好多好的不能都当成坏的扔了吧。。

    再比如"全",我去全部预测成好的这真正好的都在我的预测里,也就是100%。可是这时的"准"就贼不准了。。

    所以就必须来平衡这俩同志的关系了,怎么平衡呢?肯定是通过权重来的呀,此时,F值登上历史舞台!

啥意思捏?

    实例化讲解吧。比如我们的香蕉中 1 表示好的,0表示坏的,有10个香蕉:

       gold :     [ 1,1,1,1,1,0,0,0,0,0 ]

       pred:   [ 1,0,1,1,1,1,1,0,0,0 ]

    注释:gold是现实的好坏;pred是预测的好坏。

    P(Precision) 查准率:就是上面说的"准"。字面意思好理解呀,就是在预测当中查找准确个数的比例。公式为:

        P = 真正预测准确的数量 / 预测是准确的数量 = 4 / 6

    R(Recall) 查全率:就是上面的"全"。根据字面理解,在预测中看看真正预测对的占全有对的比率。公式为:

      R = 真正预测准确的数量 / 所有真正好的数量 = 4 / 5

    F值是:

        F(k) = ( 1 + k ) * P * R / ( ( k*k ) * P + R )

        注释:k>0 度量了 查全率 对 查准率 的相对重要性。k>1查全率有更大影响;k<1查准率有更大影响。

        在这个实例中可以表示为:k>1就是查全率有更大影响,就是好的香蕉最好都预测出来,因为你觉得不想把好的当成坏的扔点( 真可惜,我爱吃啊 ) ;k<1查准率有更大影响,就是一定要准确,省时间,省力更重要,不在乎好的香蕉当坏的扔点。

    而我们常用的是F1,就是F(1)的意思,k=1,比如我们做一个分类任务,这几个类觉得都一样重要。此时:

        F(1) = 2 * P * R / ( P + R )

代码实现:

    背景:用evalList的长度是我需要求的P,R,F1的个数,比如我的实验是立场检测,分类为FAVOR(支持),AGAINST(反对),NONE(中立)。而NONE一般不考虑,只要求得FAVOR,AGAINST各自的P,R,F1,然后F1求个平均即可。比如这个论文的数据:

from Stance Detection with Bidirectional Conditional Encoding paper

    这时我的evalList里有两个数据分别表示FAVOR,AGAINST各自的P,R,F1值。

    这个P,R,F1的代码为:

code

print

就这样吧。应该讲的很详细了!

作者:zenRRan

链接:https://www.jianshu.com/p/6536d584d5fd

來源:简书

简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,565评论 6 525
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,696评论 3 406
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,935评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,327评论 1 303
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,338评论 6 401
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,760评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,085评论 3 431
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 41,091评论 0 280
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,656评论 1 327
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,657评论 3 348
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,767评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,360评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,088评论 3 341
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,493评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,654评论 1 278
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,374评论 3 383
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,841评论 2 367

推荐阅读更多精彩内容