Machine Learning-week 3

 Question 1

Suppose that you have trained a logistic regression classifier, and it outputs on a new examplex a prediction hθ(x) = 0.7. This means (check all that apply):

Our estimate forP(y=1|x;θ) is 0.7.

Our estimate forP(y=0|x;θ) is 0.3.

Our estimate forP(y=1|x;θ) is 0.3.

Our estimate forP(y=0|x;θ) is 0.7.

Solution

Our estimate for P(y=1|x;θ) is 0.7. T hθ(x)is preciselyP(y=1|x;θ) , so each is 0.7. Our estimate for P(y=0|x;θ) is 0.3. T Since we must have P(y=0|x;θ) = 1−P(y=1|x;θ) , the former is 1−0.7=0.3 . Our estimate for P(y=1|x;θ) is 0.3. F hθ(x) gives P(y=1|x;θ) , not 1−P(y=1|x;θ) . Our estimate for P(y=0|x;θ) is 0.7. F hθ(x) is P(y=1|x;θ) , not P(y=0|x;θ)

Question2 

Which of the following are true? Check all that apply.

1.  J(θ) will be a convex function, so gradient descent should converge to the global minimum.

2. CORRECT Adding polynomial features (e.g., instead using hθ(x)=g(θ0+θ1x1+θ2x2+θ3x21+θ4x1x2+θ5x22) ) could increase how well we can fit the training data.

3. The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.

4. WRONG Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.

1,4 not correct


Question 3

For logistic regression, the gradient is given by ∂∂θjJ(θ)=1m∑mi=1(hθ(x(i))−y(i))x(i)j. Which of these is a correct gradient descent update for logistic regression with a learning rate of α? Check all that apply.

θ:=θ−α1m∑mi=1(θTx−y(i))x(i).

CORRECT θj:=θj−α1m∑mi=1(hθ(x(i))−y(i))x(i)j (simultaneously update for all j).

θj:=θj−α1m∑mi=1(hθ(x(i))−y(i))x(i) (simultaneously update for all j).

CORRECT θj:=θj−α1m∑mi=1(11+e−θTx(i)−y(i))x(i)j (simultaneously update for all j).

Suppose you have the following training set, and fit a logistic regression classifier hθ(x)=g(θ0+θ1x1+θ2x2) .

4.

Which of the following statements are true? Check all that apply.

CORRECT The sigmoid function g(z)=11+e−z is never greater than one (>1).

CORRECT The cost function J(θ) for logistic regression trained with m≥1 examples is always greater than or equal to zero.

For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

WRONG Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.

%-----------------------%

CORRECT The one-vs-all technique allows you to use logistic regression for problems in which each y(i) comes from a fixed, discrete set of values.

For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

CORRECT The cost function J(θ) for logistic regression trained with m≥1 examples is always greater than or equal to zero.

Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).

%===================================================%

5.

Suppose you train a logistic classifier hθ(x)=g(θ0+θ1x1+θ2x2). Suppose θ0=−6,θ1=1,θ2=0. Which of the following figures represents the decision boundary found by your classifier?

WRONG% 1 | 0 vertical

Figure:

right

% 0 | 1 vertical

Figure:

% 0 | 1 horizontal

Figure:

% 1 | 0 horizontal

Figure

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容

  • 没有理性的人生,只有理性的片刻,虽保持理性,那是因为诱惑还没达到,在高于预期的利益诱惑面前,人都是感性的,都会不堪...
    谏追阅读 232评论 0 0
  • Elasticsearch 单机多节点 下载Elasticsearch安装包(本文实验环境版本为5.5.1) 将安...
    程序员七哥阅读 3,210评论 0 7
  • 1Q84如果让杜拉斯来写,大概200多页就能说完整个故事了。 第一部的前两章就有种弃书的念头,拖沓,无比拖沓冗长的...
    猫须Alice阅读 1,218评论 0 3
  • 智能手机,WiFI、4G网络遍布,摄像头无处不在,各种设备都带着智能系统。年终、每月、每周每天告诉你吃、穿、用、玩...
    挖泥巴阅读 1,590评论 0 51