Machine Learning-week 3

 Question 1

Suppose that you have trained a logistic regression classifier, and it outputs on a new examplex a prediction hθ(x) = 0.7. This means (check all that apply):

Our estimate forP(y=1|x;θ) is 0.7.

Our estimate forP(y=0|x;θ) is 0.3.

Our estimate forP(y=1|x;θ) is 0.3.

Our estimate forP(y=0|x;θ) is 0.7.

Solution

Our estimate for P(y=1|x;θ) is 0.7. T hθ(x)is preciselyP(y=1|x;θ) , so each is 0.7. Our estimate for P(y=0|x;θ) is 0.3. T Since we must have P(y=0|x;θ) = 1−P(y=1|x;θ) , the former is 1−0.7=0.3 . Our estimate for P(y=1|x;θ) is 0.3. F hθ(x) gives P(y=1|x;θ) , not 1−P(y=1|x;θ) . Our estimate for P(y=0|x;θ) is 0.7. F hθ(x) is P(y=1|x;θ) , not P(y=0|x;θ)

Question2 

Which of the following are true? Check all that apply.

1.  J(θ) will be a convex function, so gradient descent should converge to the global minimum.

2. CORRECT Adding polynomial features (e.g., instead using hθ(x)=g(θ0+θ1x1+θ2x2+θ3x21+θ4x1x2+θ5x22) ) could increase how well we can fit the training data.

3. The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.

4. WRONG Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.

1,4 not correct


Question 3

For logistic regression, the gradient is given by ∂∂θjJ(θ)=1m∑mi=1(hθ(x(i))−y(i))x(i)j. Which of these is a correct gradient descent update for logistic regression with a learning rate of α? Check all that apply.

θ:=θ−α1m∑mi=1(θTx−y(i))x(i).

CORRECT θj:=θj−α1m∑mi=1(hθ(x(i))−y(i))x(i)j (simultaneously update for all j).

θj:=θj−α1m∑mi=1(hθ(x(i))−y(i))x(i) (simultaneously update for all j).

CORRECT θj:=θj−α1m∑mi=1(11+e−θTx(i)−y(i))x(i)j (simultaneously update for all j).

Suppose you have the following training set, and fit a logistic regression classifier hθ(x)=g(θ0+θ1x1+θ2x2) .

4.

Which of the following statements are true? Check all that apply.

CORRECT The sigmoid function g(z)=11+e−z is never greater than one (>1).

CORRECT The cost function J(θ) for logistic regression trained with m≥1 examples is always greater than or equal to zero.

For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

WRONG Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.

%-----------------------%

CORRECT The one-vs-all technique allows you to use logistic regression for problems in which each y(i) comes from a fixed, discrete set of values.

For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

CORRECT The cost function J(θ) for logistic regression trained with m≥1 examples is always greater than or equal to zero.

Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).

%===================================================%

5.

Suppose you train a logistic classifier hθ(x)=g(θ0+θ1x1+θ2x2). Suppose θ0=−6,θ1=1,θ2=0. Which of the following figures represents the decision boundary found by your classifier?

WRONG% 1 | 0 vertical

Figure:

right

% 0 | 1 vertical

Figure:

% 0 | 1 horizontal

Figure:

% 1 | 0 horizontal

Figure

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 没有理性的人生,只有理性的片刻,虽保持理性,那是因为诱惑还没达到,在高于预期的利益诱惑面前,人都是感性的,都会不堪...
    谏追阅读 266评论 0 0
  • Elasticsearch 单机多节点 下载Elasticsearch安装包(本文实验环境版本为5.5.1) 将安...
    程序员七哥阅读 3,266评论 0 7
  • 1Q84如果让杜拉斯来写,大概200多页就能说完整个故事了。 第一部的前两章就有种弃书的念头,拖沓,无比拖沓冗长的...
    猫须Alice阅读 1,242评论 0 3
  • 智能手机,WiFI、4G网络遍布,摄像头无处不在,各种设备都带着智能系统。年终、每月、每周每天告诉你吃、穿、用、玩...
    挖泥巴阅读 1,615评论 0 51