15. Anomaly detection

Anomaly detection

Problem motivation

Gaussian distribution

Gaussian distribution: Say x\in R. If x is a distributed Gassian with mean \mu, variance \sigma^2

x\sim N(\mu,\sigma^2)

P(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}\exp^{(-\frac{(x-\mu)^2}{2\sigma^2})}

Parameter estimation:

\mu = \frac{1}{m}\sum\limits_{i=1}^mx^{(i)}
\sigma^2 = \frac{1}{m}\sum\limits_{i=1}^m(x^{(i)}-\mu)^2

m = m-1, whether use m or m-1 make very little difference.

Algorithm

Density estimation

\begin{aligned} P(x) & = P(x_1;\mu_1,\sigma_1^2)P(x_2;\mu_2,\sigma_2^2)...P(x_n;\mu_n,\sigma_n^2) \\ & =\prod_{j=1}^nP(x_j;\mu_j,\sigma_j^2) \end{aligned}

Anomaly detection algorithm

  1. Choose features x_i that you think might be indicative of anomalous examples.
  2. Fit parameters \mu_1,...,\mu_n,\sigma_1^2,...,\sigma_n^2
  3. Given new example x, compute p(x):
    \begin{aligned} P(x) & = P(x_1;\mu_1,\sigma_1^2)P(x_2;\mu_2,\sigma_2^2)...P(x_n;\mu_n,\sigma_n^2) \\ & =\prod_{j=1}^nP(x_j;\mu_j,\sigma_j^2) \end{aligned}
    Anomaly if p\le \epsilon

Developing and evaluating an anomaly detection system

Whem developing a learning algorithm (choosing features, etc.), making decisions is much easier if we have a way of evaluating our learning algorithm.

Assume we have some labeled data, of anomalous and non-anomalous examples.

  • Training set (normal examples)
  • cross validiation set (labeled examples)
  • test set (labeled examples)

Can also use cross validation set to choose parameter \epsilon

Anomaly detection vs. supervised learning

Anomaly detection Supervised learning
Very small number of positive examples; Large number of negative examples Large number of positive examples and negative examples
Hard for any algorithm to learn from positive examples what the anomalies look like; future anomalies may look nothing like any of the anomalous examples we've seen so far. Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

Choosing what features to use

Non-gaussian features: make your data more like Gaussian.

Error analysis for anomaly detection

  • Most common problem: p(x) is comparable (say, both large) for normal and anomalous examples.
    Create some new features.
  • Choose featrues that might take on unusually large or small values in the event of an anomaly.

Multivariate Gaussian distribution

  • x\in R^n. Don't model p(x_1),p(x_2),..., etc. separately.
  • Model p(x) all in one go.
  • Parameters: \mu\in R^n, \Sigma\in R^{n\times n}

p(x;\mu,\sigma) = \frac{1}{(2\pi)^{n/2}\det(\Sigma)^{1/2}}\exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu))

there are some pics that show the multivariate gaussian look like in the video.

Anomaly detection using the multivariate Gaussian distribution

p(x;\mu,\sigma) = \frac{1}{(2\pi)^{n/2}\det(\Sigma)^{1/2}}\exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu))

\begin{aligned} \mu & = \frac{1}{m}\sum_{i=1}^mx^{(i)} \\ \Sigma & = \frac{1}{m}\sum_{i=1}^m(x^{(i)l}-\mu)(x^{(i)}-\mu)^T \end{aligned}

Original model vs. Multivariate Gaussian

original model:

  • manually create features to capture anomalies where x_1,x_2 take unusual combinations of values.
  • computationally cheaper
  • ok even if m is small

multivariate Gaussian:

  • automatically captures correlations between features
  • computationally more expensive
  • must have m\ge n, or else \Sigma is non-invertible
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352