Tensorflow2.0+ GCN

欢迎关注公众号与头条号:极意AI,转发支持5秒后获得锦鲤~

image

这篇文章直接上代码,对于图神经网络的理论还没有整理完毕,这是第一版的tensorflow2.0 GCN实现。谷歌今年推出tf2.0后,建议我们还是快速更新代码,因为这次API的变化确实很大!另外后续我也会发表pytorch版本的GCN实例,敬请关注。后面直播开课后大家可以去听听,不求打赏,只求推广~

graph.py

import tensorflow as tf
from tensorflow.keras import activations, initializers, constraints
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Layer
import tensorflow.keras.backend as K


class GraphConvolution(Layer):
    """Basic graph convolution layer as in https://arxiv.org/abs/1609.02907"""
    def __init__(self, units, support=1,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)

        super(GraphConvolution, self).__init__(**kwargs)
        self.units = units
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.supports_masking = True
        self.support = support
        assert support >= 1.0

    def compute_output_shape(self, input_shapes):
        features_shape = input_shapes[0]
        output_shape = (features_shape[0], self.units)
        return output_shape  # (batch_size, output_dim)

    def build(self, input_shapes):
        features_shape = input_shapes[0]
        assert len(features_shape) == 2
        input_dim = features_shape[1]
        self.kernel = self.add_weight(shape=(input_dim * self.support,
                                             self.units),
                                      initializer=self.kernel_initializer,
                                      name='kernel',
                                      regularizer=self.kernel_regularizer,
                                      constraint=self.kernel_constraint)
        if self.use_bias:
            self.bias = self.add_weight(shape=(self.units,),
                                        initializer=self.bias_initializer,
                                        name='bias',
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint)
        else:
            self.bias = None
        self.built = True
    
    # core code
    def call(self, inputs, mask=None):
        features = inputs[0]
        basis = inputs[1:] # this is a list
        supports = list()
        for i in range(self.support):
            # A * X
            supports.append(K.dot(basis[i], features))
        supports = K.concatenate(supports, axis=1)
        # A * X * W
        output = K.dot(supports, self.kernel)
        if tf.is_tensor(self.bias) :
            output += self.bias
        return self.activation(output)

    def get_config(self):
        config = {'units': self.units,
                  'support': self.support,
                  'activation': activations.serialize(self.activation),
                  'use_bias': self.use_bias,
                  'kernel_initializer': initializers.serialize(
                      self.kernel_initializer),
                  'bias_initializer': initializers.serialize(
                      self.bias_initializer),
                  'kernel_regularizer': regularizers.serialize(
                      self.kernel_regularizer),
                  'bias_regularizer': regularizers.serialize(
                      self.bias_regularizer),
                  'activity_regularizer': regularizers.serialize(
                      self.activity_regularizer),
                  'kernel_constraint': constraints.serialize(
                      self.kernel_constraint),
                  'bias_constraint': constraints.serialize(self.bias_constraint)
        }
        base_config = super(GraphConvolution, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

utils.py

from __future__ import print_function

import scipy.sparse as sp
import numpy as np
from scipy.sparse.linalg.eigen.arpack import eigsh, ArpackNoConvergence


def encode_onehot(labels):
    classes = set(labels)
    classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)}
    labels_onehot = np.array(list(map(classes_dict.get, labels)), dtype=np.int32)
    return labels_onehot


def load_data(path="./data/cora/", dataset="cora"):
    """Load citation network dataset (cora only for now)"""
    print('Loading {} dataset...'.format(dataset))

    idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset), dtype=np.dtype(str))
    features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
    labels = encode_onehot(idx_features_labels[:, -1])

    # build graph
    idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
    idx_map = {j: i for i, j in enumerate(idx)}
    edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset), dtype=np.int32)
    edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
                     dtype=np.int32).reshape(edges_unordered.shape)
    adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),
                        shape=(labels.shape[0], labels.shape[0]), dtype=np.float32)

    # build symmetric adjacency matrix
    adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)

    print('Dataset(adj) has {} nodes, {} edges, {} features.'.format(adj.shape[0], edges.shape[0], features.shape[1]))

    return features.todense(), adj, labels


def normalize_adj(adj, symmetric=True):
    if symmetric:
        d = sp.diags(np.power(np.array(adj.sum(1)), -0.5).flatten(), 0)
        a_norm = adj.dot(d).transpose().dot(d).tocsr()
    else:
        d = sp.diags(np.power(np.array(adj.sum(1)), -1).flatten(), 0)
        a_norm = d.dot(adj).tocsr()
    return a_norm


def preprocess_adj(adj, symmetric=True):
    adj = adj + sp.eye(adj.shape[0])
    adj = normalize_adj(adj, symmetric)
    return adj


def sample_mask(idx, l):
    mask = np.zeros(l)
    mask[idx] = 1
    return np.array(mask, dtype=np.bool)


def get_splits(y):
    idx_train = range(140)
    idx_val = range(200, 500)
    idx_test = range(500, 1500)
    y_train = np.zeros(y.shape, dtype=np.int32)
    y_val = np.zeros(y.shape, dtype=np.int32)
    y_test = np.zeros(y.shape, dtype=np.int32)
    y_train[idx_train] = y[idx_train]
    y_val[idx_val] = y[idx_val]
    y_test[idx_test] = y[idx_test]
    train_mask = sample_mask(idx_train, y.shape[0])
    return y_train, y_val, y_test, idx_train, idx_val, idx_test, train_mask


def categorical_crossentropy(preds, labels):
    return np.mean(-np.log(np.extract(labels, preds)))


def accuracy(preds, labels):
    return np.mean(np.equal(np.argmax(labels, 1), np.argmax(preds, 1)))


def evaluate_preds(preds, labels, indices):

    split_loss = list()
    split_acc = list()

    for y_split, idx_split in zip(labels, indices):
        split_loss.append(categorical_crossentropy(preds[idx_split], y_split[idx_split]))
        split_acc.append(accuracy(preds[idx_split], y_split[idx_split]))

    return split_loss, split_acc


def normalized_laplacian(adj, symmetric=True):
    adj_normalized = normalize_adj(adj, symmetric)
    laplacian = sp.eye(adj.shape[0]) - adj_normalized
    return laplacian


def rescale_laplacian(laplacian):
    try:
        print('Calculating largest eigenvalue of normalized graph Laplacian...')
        largest_eigval = eigsh(laplacian, 1, which='LM', return_eigenvectors=False)[0]
    except ArpackNoConvergence:
        print('Eigenvalue calculation did not converge! Using largest_eigval=2 instead.')
        largest_eigval = 2

    scaled_laplacian = (2. / largest_eigval) * laplacian - sp.eye(laplacian.shape[0])
    return scaled_laplacian


def chebyshev_polynomial(X, k):
    """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices."""
    print("Calculating Chebyshev polynomials up to order {}...".format(k))

    T_k = list()
    T_k.append(sp.eye(X.shape[0]).tocsr())
    T_k.append(X)

    def chebyshev_recurrence(T_k_minus_one, T_k_minus_two, X):
        X_ = sp.csr_matrix(X, copy=True)
        return 2 * X_.dot(T_k_minus_one) - T_k_minus_two

    for i in range(2, k+1):
        T_k.append(chebyshev_recurrence(T_k[-1], T_k[-2], X))

    return T_k


def sparse_to_tuple(sparse_mx):
    if not sp.isspmatrix_coo(sparse_mx):
        sparse_mx = sparse_mx.tocoo()
    coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
    values = sparse_mx.data
    shape = sparse_mx.shape
    return coords, values, shape

train.py

import tensorflow as tf
from kegra.utils import *
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.regularizers import l2
from kegra.layers.graph import GraphConvolution


class Config(object):
    dataset = 'cora'
    filter = 'localpool'    # Local pooling filters (see 'renormalization trick' in Kipf & Welling, arXiv 2016)
    # filter = 'chebyshev'  # Chebyshev polynomial basis filters (Defferard et al., NIPS 2016)
    max_degree = 2  # maximum polynomial degree
    sym_norm = True  # symmetric (True) vs. left-only (False) normalization
    NB_EPOCH = 20
    PATIENCE = 10  # early stopping patience
    support = 1
    epochs = 100


def convert_sparse_matrix_to_sparse_tensor(x):
    coo = x.tocoo()
    indices = np.mat([coo.row, coo.col]).transpose()
    return tf.SparseTensor(indices, coo.data, coo.shape)


def get_inputs(adj, x):
    if Config.filter == 'localpool':
        print('Using local pooling filters...')
        adj_ = preprocess_adj(adj, Config.sym_norm)
        adj_ = adj_.todense()
        graph = [x, adj_]
        adj_input = [Input(batch_shape=(None, None), sparse=False, name='adj_input')]
    elif Config.filter == 'chebyshev':
        print('Using Chebyshev polynomial basis filters...')
        L = normalized_laplacian(adj, Config.sym_norm)
        L_scaled = rescale_laplacian(L)
        T_k = chebyshev_polynomial(L_scaled, Config.max_degree)
        support = Config.max_degree + 1
        graph = [x] + T_k
        adj_input = [Input(batch_shape=(None, None), sparse=False, name='adj_input') for _ in range(support)]
    else:
        raise Exception('Invalid filter type.')
    return graph, adj_input


def build_model(x, y, adj_input):
    fea_input = Input(batch_shape=(None, x.shape[1]), name='fea_input')
    net = Dropout(0.2)(fea_input)
    net = GraphConvolution(512, Config.support, activation='relu', kernel_regularizer=l2(5e-4))([net] + adj_input)
    net = Dropout(0.2)(net)
    net = GraphConvolution(256, Config.support, activation='relu', kernel_regularizer=l2(5e-4))([net] + adj_input)
    net = Dropout(0.2)(net)
    net = GraphConvolution(128, Config.support, activation='relu', kernel_regularizer=l2(5e-4))([net] + adj_input)
    net = Dropout(0.2)(net)
    net = GraphConvolution(64, Config.support, activation='relu', kernel_regularizer=l2(5e-4))([net] + adj_input)
    net = Dropout(0.2)(net)
    net = Flatten()(net)
    output = Dense(y.shape[1], activation='softmax')(net)
    # output = GraphConvolution(y.shape[1], Config.support, activation='softmax')([net] + adj_input)
    model = Model(inputs=[fea_input] + adj_input, outputs=output)
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.01))
    return model


def train_model(x, y, model, train_mask, y_train, y_val, idx_train, idx_val, batch_size):
    for i in range(Config.epochs):
        model.fit(x, y, sample_weight=train_mask, batch_size=batch_size, epochs=1, shuffle=False, verbose=1)
        y_pred = model.predict(x, batch_size=batch_size)
        train_val_loss, train_val_acc = evaluate_preds(y_pred, [y_train, y_val], [idx_train, idx_val])
        print("train_loss= {:.2f}".format(train_val_loss[0]), "train_acc= {:.2f}".format(train_val_acc[0]),
              "val_loss= {:.2f}".format(train_val_loss[1]), "val_acc= {:.2f}".format(train_val_acc[1]))
    return model


def estimate_model(model, x, y_test, idx_test, batch_size):
    y_pred = model.predict(x, batch_size=batch_size)
    test_loss, test_acc = evaluate_preds(y_pred, [y_test], [idx_test])
    print("Test set results:", "loss= {:.2f}".format(test_loss[0]), "accuracy= {:.4f}".format(test_acc[0]))


def main():
    x, adj, y = load_data(dataset=Config.dataset)
    batch_size = adj.shape[1]
    x /= x.sum(1).reshape(-1, 1)    # Normalize X
    y_train, y_val, y_test, idx_train, idx_val, idx_test, train_mask = get_splits(y)
    x_graph, adj_input = get_inputs(adj, x)
    model = build_model(x, y, adj_input)
    model = train_model(x_graph, y, model, train_mask, y_train, y_val, idx_train, idx_val, batch_size)
    estimate_model(model, x_graph, y_test, idx_test, batch_size)


if __name__ == '__main__':
    main()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容