数据和特征决定了机器学习的上限,模型和算法只是逼近这个上限。特征工程对原始数据进行特征提取、特征预处理、特征选择等一系列过程,向模型与算法输出能够更好地表征问题的特征,进而优化机器学习效果。
"Actually the success of all Machine Learning algorithms depends on how you present the data."
相关文章:
Discover Feature Engineering, How to Engineer Features and How to Get Good at It