caffe之solver讲解及其配置文件编写

一、solver算是caffe的核心的核心,它协调着整个模型的运作。

caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

#caffe train --solver=*_slover.prototxt

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

Stochastic Gradient Descent (type: "SGD"),

AdaDelta (type: "AdaDelta"),

Adaptive Gradient (type: "AdaGrad"),

Adam (type: "Adam"),

Nesterov’s Accelerated Gradient (type: "Nesterov") and

RMSprop (type: "RMSProp")

具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。

二、Solver的流程:

1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.     通过forward和backward迭代的进行优化来跟新参数。

3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

4.     在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照(snapshot),以及对应的状态。

三、solver参数:

------------与学习率有关的参数:

base_lr

这个参数代表的是此网络最开始的学习速率(BeginningLearning rate),一般是个浮点数,根据机器学习中的知识,lr过大会导致不收敛,过小会导致收敛过慢,所以这个参数设置也很重要。

lr_policy

这个参数代表的是learningrate应该遵守什么样的变化规则,这个参数对应的是字符串,选项及说明如下:

“step”-需要设置一个stepsize参数,返回base_lr* gamma ^ ( floor ( iter / stepsize ) ),iter为当前迭代次数

“multistep”-和step相近,但是需要stepvalue参数,step是均匀等间隔变化,而multistep是根据stepvalue的值进行变化

“fixed”-保持base_lr不变

“exp”-返回base_lr* gamma ^ iter, iter为当前迭代次数

“poly”-学习率进行多项式误差衰减,返回base_lr( 1 - iter / max_iter ) ^ ( power )

“sigmoid”-学习率进行sigmod函数衰减,返回base_lr( 1/ 1+exp( -gamma * ( iter - stepsize ) ) )

“inv”逐渐下降inv:returnbase_lr*(1+gamma*iter)^(-power)

gamma

这个参数就是和learningrate相关的,lr_policy中包含此参数的话,需要进行设置,一般是一个实数。

stepsize

这个参数表示多久(在一些迭代中)我们应该转移到下一步的训练。 这个值是一个正整数.

stepvalue

Thisparameter indicates one of potentially many iteration counts that weshould move onto the next “step” of training. This value is apositive integer. There are often more than one of these parameterspresent, each one indicated the next step iteration.

-------------与迭代相关的参数:

max_iter

最大迭代次数,这个数值告诉网络何时停止训练,太小会达不到收敛,太大会导致震荡,为正整数。

momentum

上一次梯度更新的权重,realfraction

weight_decay

权重衰减项,用于防止过拟合。

solver_mode

选择CPU训练或者GPU训练。

iter_size

这个参数乘上train.prototxt中的batchsize是你实际使用的batchsize。 相当于读取batchsize* itersize个图像才做一下gradientdecent。 这个参数可以规避由于gpu内存不足而导致的batchsize的限制因为你可以用多个iteration做到很大的batch即使单次batch有限。

------------与快照相关的参数:

snapshot

训练快照,确定多久保存一次model和solverstate,positiveinteger。

snapshot_prefix

snapshot的前缀,就是model和solverstate的命名前缀,也代表路径。

#选取训练、测试所用的网络

net(需要是基于根路径的 train_net: "models/VGG16/train.prototxt")

path to prototxt (train and val)

---------------与测试相关的参数:

test_iter

每次test_interval的test的迭代次数,假设测试样本总数为10000张图片,一次性执行全部的话效率很低,所以将测试数据分为几个批次进行测试,每个批次的数量就是batch_size。如果batch_size=100,那么需要迭代100次才能将10000个数据全部执行完,所以test_iter设置为100。

test_interval

测试间隔,每训练多少次进行一次测试。

display

间隔多久对结果进行输出

average_loss

取多次foward的loss作平均,进行显示输出。

四、solver相关函数

void Solver::Step(int iters)

【Introduction】简单的说,这个函数就是核心的优化方法,不断通过前向和反向传播来更新参数的过程。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容