【机器学习】:理解分类模型评价指标AUC

\color{red}{ROC} (Receiver Operating Characteristic)\color{red}{受试者工作特性曲线}

ROC曲线

纵轴TPR(真正例率)和横轴FPR(假正例率)分别为
TPR= \frac {TP} {TP+FN}

FPR= \frac {FP} {FP+TN}

对于二分类问题,预测模型会对每一个样本预测一个概率p。 然后,可以选取一个阈值t,让p>t的样本预测为正,反之为负。 这样一来,根据预测的结果和实际的样本标签可以把样本分为4类

实际正样本 实际负样本
预测为正 TP(真正例) FP(假正例)
预测为负 FN(假负例) TN(真负例)

若一个学习器的ROC曲线被另一个学习器的曲线完全“包住”,则可以断言后者的性能优于前者;若两个学习器发生交叉,则难以断言哪个好哪个差,此时较为合理的评判标准是ROC下的面积,即AUC。

\color{red}{AUC}(Area Under ROC Curve)\color{red}{ROC曲线下的面积}
AUC的几何意义:
  对ROC曲线下的各部分面积求和得到。
AUC的概率意义:
  随机取出一个正样本和一个负样本,放入分类器中进行判别输出相应的为正的概率。
  那么(正样本为正的概率)>(负样本为正的概率)的可能性即AUC。
记P为出现(正样本为正的概率)>(负样本为正的概率)的可能的次数
一堆已知正负的样本(假设正样本M个,负样本N个)
随机取一对正负样本的可能性有MN对,则AUC=P/MN。

接下来就是求P。
求出所有样本放入分类器后产生其可能为正的概率,对这个概率进行降序排列
记rank_x为在整个(M+N)中输出概率排名为rank_x的正样本的秩,x是单纯在正样本输出概率中进行升序排列的秩。
则在这个样本排名
  之后(比此样本概率小)正样本有M-X个,
  之前(比此样本概率大)有M-(M-X)-1=X-1个;
  之前的负样本有(M+N-rank_x)-(X-1),
  之后的负样本有N-[(M+N-rank_x)-(X-1)]=rank_x-(M-X+1)。

P就是所有(正样本为正的概率)>(负样本为正的概率)的可能组合个数,
以上诉例子来讲,就是对M个正样本而言,每次比较排名在它之后的样本个数
P=\sum_{X=1}^{M}rank_x-(M-X+1)
后面那项是等差数列,代入AUC公式化简一下就是知乎博主小小丘贴出的最后公式
AUC=\frac{\sum_{ins_{i}\in positiveclass}rank_{ins_{i}}-\frac{M*(M+1)}{2}}{M*N}

参考:
  小小丘知乎答案
  周志华的西瓜书

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容