【ES理论篇二:ES 实现原理】

一、基本概念

1.1 名词术语

  • NRT(准实时): Elasticsearch是一个接近实时的搜索平台。这意味着,从索引一个文档直到这 个文档能够被搜索到有一个轻微的延迟(通常是1秒)。
  • Node(节点):单个的装有ElasticSearch服务并且提供故障转移和扩展的服务器
  • Cluster(集群):一个集群就是由一个或多个Node组织在一起共同工作,共同分享整个数据具有负载均衡功能的集群,集群名称是唯一标识,因为一个节点只能通过指定某个集群的名字,来加入这个集群

数据组织

  • Document(文档):可以被索引的基本数据单位
  • Index(索引):含有相同属性文档的集合
  • Type(类型):索引可以定义一个或者多个类型,文档必须属于一个类型
  • Field(列):Field是ElasticSearch中最小单位,相当于数据的某一列

Es跟关系型数据库对照如下图:

关系型数据库(Eg. MySQL) 非关系型数据库(Eg. ElasticSearch)
数据库Database 索引Index
表Table 类型Type
数据行Row 文档Dpcument
数据列Column 字段Field

1.2 Node 与 Cluster

Elastic 本质上是一个分布式数据库,允许多台服务器协同工作,每台服务器可以运行多个 Elastic 实例。单个 Elastic 实例称为一个节点(node)。一组节点构成一个集群(cluster)。

1.3 索引Index

Elastic 会索引所有字段,经过处理后写入一个反向索引(Inverted Index)。查找数据的时候,直接查找该索引。

所以,Elastic 数据管理的顶层单位就叫做 Index(索引)。它是单个数据库的同义词。每个 Index (即数据库)的名字必须是小写。

下面的命令可以查看当前节点的所有 Index。

$ curl -X GET 'http://localhost:9200/_cat/indices?v'

1.4 文档Document

Index 里面单条的记录称为 Document(文档)。许多条 Document 构成了一个 Index。
Document 使用 JSON 格式表示,下面是一个例子。

{
  "user": "张三",
  "title": "工程师",
  "desc": "数据库管理"
}

同一个 Index 里面的 Document,不要求有相同的结构(scheme),但是最好保持相同,这样有利于提高搜索效率。

1.5 类型Type

Document 可以分组,比如weather这个 Index 里面,可以按城市分组(北京和上海),也可以按气候分组(晴天和雨天)。这种分组就叫做 Type,它是虚拟的逻辑分组,用来过滤 Document。

不同的 Type 应该有相似的结构(schema),举例来说,id字段不能在这个组是字符串,在另一个组是数值。这是与关系型数据库的表的一个区别。性质完全不同的数据(比如products和logs)应该存成两个 Index,而不是一个 Index 里面的两个 Type(虽然可以做到)。

类比理解:

  • 索引:数据库
  • 类型:表
  • 文档:表中的一行记录

下面的命令可以列出每个 Index 所包含的 Type。

$ curl 'localhost:9200/_mapping?pretty=true'

根据规划,Elastic 6.x 版只允许每个 Index 包含一个 Type,7.x 版将会彻底移除 Type。

二、横向扩展与高可用

为什么需要分片和备份? 假设一个索引的数据量很大,就会造成硬盘的存储压力很大,同时搜索速度也会出现瓶颈。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。因此ElasticSearch将索引分成若干份,每个部分就是一个shard。那么,就可以将索引分成多个分片存储,从而分摊压力。分片还允许用户对其进行水平地扩展和拆分,以及分布式的操作,可以提高搜索以及其他操作的效率。

当一个主分片失败或者出现问题时,备份的分片就可以代替工作,从而提高了ES的可用性。备份的分片还可以执行搜索操作,以分摊搜索的压力。当你创建一个索引的时候,你可以使用ES默认在创建索引时会创建5个分片,1份备份,也可以自行指定你想要的分片和备份的数量。

  • Shards(分片):每个索引都有多个分片,每个分片是一个Lucene索引。分片的好处就是可以对数据进行水平分割,扩展内容容量,提高查询性能和吞吐量
  • Replicas(备份):是索引的一份或者多份拷贝,用于提供高可用保证。
cluster

备注:分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。主要原因在于分片在创建之后,难以在不同节点间迁移。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容