感知器


机器学习之神经网络

神经网络是由神经元连接而组成,神经网络由输入层、输出层、隐藏层组成。(隐藏层大于2称作深度神经网络)

深层网络表达能力更强,一个仅有一层隐藏层的神经网络能够拟合任何一个函数,但是需要很多的神经元。深层神经网络用较少的神经元拟合同样的函数。也就是为了拟合一个函数,要么使用浅而宽的网络,要么使用深而窄的网络,后者往往更节约资源。

深层网络的劣势是:不太容易训练,即需要大量的数据,很好的技巧才能训练好一个深层网络。

神经网络

感知器

神经元(感知器)

神经元

  • 输入权值:权值:w_i,偏置项:b,即上图中的w_0
  • 激活函数:Sigmoid、tanh、ReLU等等
  • 输出:采用如下公式计算,其中f为激活函数
    y=f(\sum(w * x) + b)

感知器还能做什么?感知器可以拟合任何线性函数。

感知器的训练

对于权重w与偏置b,可以通过训练获取。

将权重与偏置项初始化为0,然后,通过感知器规则迭代修改w_ib,直至训练完成。

w_i \leftarrow w_i + \Delta w_i b \leftarrow b + \Delta b
其中:
\Delta w_i = \eta (t-y) x_i \Delta b = \eta (t-y) w_i是与输入x_i对应的权重项,b是偏置项。事实上,可以把b看作是输入值永远为1的输入x_b所对应的权重。t样本实际值(label),y感知器输出值\eta是学习率,控制每一步调整权重值的幅度。

每次从训练数据中取出一个样本的输入向量x,使用感知器计算其输出y,再根据上面的规则调整权重。经过多轮迭代后,训练出感知器的权重。

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

from __future__ import print_function
from functools import reduce


class VectorOp(object):
    """
    实现向量计算操作
    """
    @staticmethod
    def dot(x, y):
        """
        计算两个向量x和y的内积
        """
        # 首先把x[x1,x2,x3...]和y[y1,y2,y3,...]按元素相乘
        # 变成[x1*y1, x2*y2, x3*y3]
        # 然后利用reduce求和
        return reduce(lambda a, b: a + b, VectorOp.element_multiply(x, y), 0.0)

    @staticmethod
    def element_multiply(x, y):
        """
        将两个向量x和y按元素相乘
        """
        # 首先把x[x1,x2,x3...]和y[y1,y2,y3,...]打包在一起
        # 变成[(x1,y1),(x2,y2),(x3,y3),...]
        # 然后利用map函数计算[x1*y1, x2*y2, x3*y3]
        return list(map(lambda x_y: x_y[0] * x_y[1], zip(x, y)))

    @staticmethod
    def element_add(x, y):
        """
        将两个向量x和y按元素相加
        """
        # 首先把x[x1,x2,x3...]和y[y1,y2,y3,...]打包在一起
        # 变成[(x1,y1),(x2,y2),(x3,y3),...]
        # 然后利用map函数计算[x1+y1, x2+y2, x3+y3]
        return list(map(lambda x_y: x_y[0] + x_y[1], zip(x, y)))

    @staticmethod
    def scala_multiply(v, s):
        """
        将向量v中的每个元素和标量s相乘
        """
        return map(lambda e: e * s, v)


class Perceptron(object):
    def __init__(self, input_num, activator):
        """
        初始化感知器,设置输入参数的个数,以及激活函数。
        激活函数的类型为double -> double
        """
        self.activator = activator
        # 权重向量初始化为0
        self.weights = [0.0] * input_num
        # 偏置项初始化为0
        self.bias = 0.0

    def __str__(self):
        """
        打印学习到的权重、偏置项
        """
        return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)

    def predict(self, input_vec):
        """
        输入向量,输出感知器的计算结果
        """
        # 计算向量input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]的内积
        # 然后加上bias
        return self.activator(
            VectorOp.dot(input_vec, self.weights) + self.bias)

    def train(self, input_vecs, labels, iteration, rate):
        """
        输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
        """
        for i in range(iteration):
            self._one_iteration(input_vecs, labels, rate)

    def _one_iteration(self, input_vecs, labels, rate):
        """
        一次迭代,把所有的训练数据过一遍
        """
        # 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
        # 而每个训练样本是(input_vec, label)
        samples = zip(input_vecs, labels)
        # 对每个样本,按照感知器规则更新权重
        for (input_vec, label) in samples:
            # 计算感知器在当前权重下的输出
            output = self.predict(input_vec)
            # 更新权重
            self._update_weights(input_vec, output, label, rate)

    def _update_weights(self, input_vec, output, label, rate):
        """
        按照感知器规则更新权重
        """
        # 首先计算本次更新的delta
        # 然后把input_vec[x1,x2,x3,...]向量中的每个值乘上delta,得到每个权重更新
        # 最后再把权重更新按元素加到原先的weights[w1,w2,w3,...]上
        delta = label - output
        self.weights = VectorOp.element_add(
            self.weights, VectorOp.scala_multiply(input_vec, rate * delta))
        # 更新bias
        self.bias += rate * delta


def f(x):
    """
    定义激活函数f
    """
    return 1 if x > 0 else 0


def get_training_dataset():
    """
    基于and真值表构建训练数据
    """
    # 构建训练数据
    # 输入向量列表
    input_vecs = [[1, 1], [0, 0], [1, 0], [0, 1]]
    # 期望的输出列表,注意要与输入一一对应
    # [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
    labels = [1, 0, 0, 0]
    return input_vecs, labels


def train_and_perceptron():
    """
    使用and真值表训练感知器
    """
    # 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
    p = Perceptron(2, f)
    # 训练,迭代10轮, 学习速率为0.1
    input_vecs, labels = get_training_dataset()
    p.train(input_vecs, labels, 10, 0.1)
    # 返回训练好的感知器
    return p


if __name__ == '__main__':
    # 训练and感知器
    and_perception = train_and_perceptron()
    # 打印训练获得的权重
    print(and_perception)
    # 测试
    print('1 and 1 = %d' % and_perception.predict([1, 1]))
    print('0 and 0 = %d' % and_perception.predict([0, 0]))
    print('1 and 0 = %d' % and_perception.predict([1, 0]))
    print('0 and 1 = %d' % and_perception.predict([0, 1]))
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354