电商推荐系统

推荐系统

1、推荐系统的含义

推荐系统包含系统推荐和个性化推荐,系统推荐是根据大众行为的推荐引擎,对每个用户都给出同样的推荐(如淘宝的“热卖单品”),而个性化推荐是对不同的用户,根据他们的口味和喜好给出更加精确的推荐(如:淘宝的“猜你喜欢”)。

2、推荐场景

推荐出现的位置、场景也非常复杂,几乎所有页面上面都可以进行商品推荐,而不同页面,推荐的侧重点也会不尽相同。比如:首页推荐,用户还没有任何行为,所以一般都是通过该用户的历史轨迹向用户进行推荐。在详情页,用户已经表现出对该商品的强烈兴趣,一般会做类似商品或者组合商品的推荐。

在《京东推荐系统实践—打造千人千面的个性化推荐引擎》里,做了如下总结:

单品页:购买意图;

过渡页:提高客单价;

购物车页:购物决策;

无结果页:减少跳出率;

订单完成页:交叉销售;

关注推荐:提高转化;

我的京东推荐:提高忠诚度;

首页猜你喜欢:吸引用户。

3.系统推荐

3.1系统推荐目的

针对所有用户推荐,当前比较流行的商品(必选) 或 促销实惠商品(可选) 或 新上市商品(可选),以促进商品的销售量。 PS:根据我们的应用情况考虑是否 选择推荐 促销实惠商品 和 新上市商品。(TODO1)

3.2、实现方式

实现方式包含:系统自动化推荐 和 人工设置推荐。

(1)系统自动化推荐考虑因素有:商品发布时间、商品分类、库存余量、历史被购买数量、历史被加入购物车数量、历史被浏览数量、降价幅度等。根据我们当前可用数据,再进一步确定(TODO2)

(2)人工设置:提供运营页面供运营人员设置,设置包含排行位置、开始时间和结束时间、推荐介绍等等。

由于系统推荐实现相对简单,因此不作过多的文字说明,下面详细介绍个性化推荐的设计。

4、个性化推荐

4.1、个性化推荐目的

对不同的用户,根据他们的口味和喜好给出更加精确的推荐,系统需要了解需推荐内容和用户的特质,或者基于社会化网络,通过找到与当前用户相同喜好的用户,实现推荐,以促进商品的销售量。

4.2、三种推荐模式的介绍

据推荐引擎的数据源有三种模式:基于人口统计学的推荐、基于内容的推荐、基于协同过滤的推荐。

(1)基于人口统计学的推荐:针对用户的“性别、年龄范围、收入情况、学历、专业、职业”进行推荐。

(2)基于内容的推荐:如下图,这里没有考虑人对物品的态度,仅仅是因为电影A月电影C相似,因此将电影C推荐给用户A。这是与后面讲到的协同过滤推荐最大的不同。

(3)基于协同过滤的推荐:如下图,这里我们并不知道物品A和物品D是否相似,仅仅考虑人对物品的喜好进行推荐。

模式采用:这三种模式可以单独使用,也可结合使用。结合我们实际情况,采用基于协同过滤的推荐更加合适,看后期情况是否结合另外两种模式实现推荐。但基于协同过滤的推荐这种模式,会引发“冷启动”问题。关于,冷启动问题,可以采用系统推荐解决方案。

4.3、用户喜好设计

(1)判断用户喜好因素:历史购买、历史购物车、历史搜索、历史浏览等,待确定我们可用数据再进一步细化。

(2)用户对某个商品的喜好程度,通过不同行为对应不同分值权重,如:历史购买(10)、历史购物车(8)、历史搜索(5)、历史浏览(6),确定用户喜好因素后再进一步对各个因素评分权重进行 合理的设计。

(3)用户对商品的喜好程度最终体现:结合某个商品的不同行为 统计出 最终对该商品的喜好程度,即对商品的喜好程度,最终以一个数字体现。

4.4、Mahout介绍

目前选择采用协同过滤框架Mahout进行实现。

Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚类等。Mahout最大的优点就是基于Hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。

Mahout 是一个布式机器学习算法的集合,但是这里我们只使用到它的推荐/协同过滤算法。


参考文档:

https://www.sohu.com/a/141040288_403327

https://www.useit.com.cn/thread-12628-1-1.html

https://www.cnblogs.com/wanghuaijun/p/7112952.html?utm_source=itdadao&utm_medium=referral

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352