505. The Maze II

Description

There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction.

Given the ball's start position, the destination and the maze, find the shortest distance for the ball to stop at the destination. The distance is defined by the number of empty spaces traveled by the ball from the start position (excluded) to the destination (included). If the ball cannot stop at the destination, return -1.

The maze is represented by a binary 2D array. 1 means the wall and 0 means the empty space. You may assume that the borders of the maze are all walls. The start and destination coordinates are represented by row and column indexes.

Example 1

Input 1: a maze represented by a 2D array
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0

Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (4, 4)

Output: 12
Explanation: One shortest way is : left -> down -> left -> down -> right -> down -> right.
The total distance is 1 + 1 + 3 + 1 + 2 + 2 + 2 = 12.

image

Example 2

Input 1: a maze represented by a 2D array
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0

Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (3, 2)

Output: -1
Explanation: There is no way for the ball to stop at the destination.

image

Note:

  1. There is only one ball and one destination in the maze.
  2. Both the ball and the destination exist on an empty space, and they will not be at the same position initially.
  3. The given maze does not contain border (like the red rectangle in the example pictures), but you could assume the border of the maze are all walls.
  4. The maze contains at least 2 empty spaces, and both the width and height of the maze won't exceed 100.

Solution

Dijkstra, time O(mn * log(mn)), space O(mn)

在"490. The Maze"的BFS算法基础上,稍微扩展下,就能想到这道题就是Dijkstra算法的应用。注意需要去掉visited(因为一个节点会被放进队列多次),同时需要用int[][] distance去保存所有位置的shortest distance。


image.png
class Solution {
    public static final int[][] DIRECTIONS = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    
    public int shortestDistance(int[][] maze, int[] start, int[] destination) {
        int m = maze.length;
        int n = maze[0].length;
        int[][] distances = new int[m][n];
        for (int[] dist : distances) {
            Arrays.fill(dist, Integer.MAX_VALUE);
        }
        
        PriorityQueue<int[]> queue
            = new PriorityQueue<>((a, b) -> a[2] - b[2]);
        queue.offer(new int[] {start[0], start[1], 0});
        
        while (!queue.isEmpty()) {
            int[] arr = queue.poll();
            if (arr[0] == destination[0] && arr[1] == destination[1]) {
                return arr[2];
            }
            
            if (distances[arr[0]][arr[1]] <= arr[2]) {  // ignore longer distance
                continue;
            }
            
            distances[arr[0]][arr[1]] = arr[2];     // update distance
            
            for (int[] direction : DIRECTIONS) {
                int i = arr[0];
                int j = arr[1];
                int dist = arr[2];
                
                while (isEmpty(maze, i + direction[0], j + direction[1])) {
                    i += direction[0];
                    j += direction[1];
                    ++dist;
                }
                
                queue.offer(new int[] {i, j, dist});
            }
        }
        
        return -1;
    }
    
    public boolean isEmpty(int[][] maze, int i, int j) {
        return isValid(maze, i, j) && maze[i][j] != 1;
    }
    
    public boolean isValid(int[][] maze, int i, int j) {
        return i >= 0 && i < maze.length && j >= 0 && j < maze[0].length;
    }
}

也可以省略掉distance[][],队列中第一次取出某节点p时,意味着此时p的最短路径已经找到,在maze中标记为-1即可。

class Solution {
    public static final int[][] DIRECTIONS = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    
    public int shortestDistance(int[][] maze, int[] start, int[] destination) {
        PriorityQueue<int[]> queue = new PriorityQueue<>((a, b) -> a[2] - b[2]);
        queue.offer(new int[] {start[0], start[1], 0});
        
        while (!queue.isEmpty()) {
            int[] arr = queue.poll();
            if (arr[0] == destination[0] && arr[1] == destination[1]) {
                return arr[2];
            }
           
            if (maze[arr[0]][arr[1]] == -1) {   // min dis already found
                continue;
            }
            
            maze[arr[0]][arr[1]] = -1;  // first time visit, arr[2] is minDis
            
            for (int[] d : DIRECTIONS) {
                int x = arr[0];
                int y = arr[1];
                int k = 0;
                
                while (isEmpty(maze, x + d[0], y + d[1])) {
                    x += d[0];
                    y += d[1];
                    ++k;
                }
                
                queue.offer(new int[] {x, y, arr[2] + k});
            }
        }
        
        return -1;
    }
    
    private int getIndex(int i, int j, int cols) {
        return i * cols + j;
    }
    
    public boolean isEmpty(int[][] maze, int i, int j) {
        return isValid(maze, i, j) && maze[i][j] != 1;
    }
    
    public boolean isValid(int[][] maze, int i, int j) {
        return i >= 0 && i < maze.length && j >= 0 && j < maze[0].length;
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容