有大数据就有人工智能的机会

人工智能时代,深度学习和大数据成了密不可分的一对儿。深度学习可以从大数据中挖掘出以往难以想象的有价值的数据、知识或规律。简单来说,有足够的数据作为深度学习的输入,计算机就可以学会以往只有人类才能理解的概念或知识,然后再将这些概念或知识应用到之前从来没有看见过的新数据上。

文/黄成甲

《智能时代》的作者吴军博士说:“在方法论的层面,大数据是一种全新的思维方式。按照大数据的思维方式,我们做事情的方式与方法需要从根本上改变。” 谷歌的围棋程序Alpha Go已经达到了人类围棋选手无法达到的境界。没有人可以与之竞争,这是因为Alpha Go在不断进行学习。Alpha Go不但从人类专业选手以往的数百万份棋谱中学习,还可以从自己和自己的对弈棋谱中学习。人类专业选手的对局、Alpha Go自己与自己的对局,这些都是Alpha Go赖以学习提高的大数据。

基于大数据的深度学习到底如何在现实生活中发挥作用呢?一个非常好的例子是,计算机可以通过预先学习成千上万张人脸图片,掌握认识和分辨人脸的基本规律。然后,计算机可以记住全国所有通缉犯的长相。没有一个单独的人类警察可以做到这一点。这样一来,全国的安防系统只要接入了这套会识别通缉犯相貌的计算机程序,通缉犯在公共场合一露面,计算机就可以通过监控摄像头采集的图像将通缉犯辨认出来。大数据和深度学习一起,可以完成以前也许需要数万名人类警察才能完成的任务。

任何拥有大数据的领域,我们都可以找到深度学习一展身手的空间,都可以做出高质量的人工智能应用。任何有大数据的领域,都有创业的机会。

金融行业有大量客户的交易数据,基于这些数据的深度学习模型可以让金融行业更好地对客户进行风险防控,或针对特定客户进行精准营销;电子商务企业有大量商家的产品数据和客户的交易数据,基于这些数据的人工智能系统可以让商家更好地预测每月甚至每天的销售情况,并提前做好进货准备;城市交通管理部门拥有大量交通监控数据,在这些数据的基础上开发的智能交通流量预测、智能交通疏导等人工智能应用正在大城市中发挥作用;大型企业的售后服务环节拥有大规模的客服语音和文字数据,这些数据足以将计算机训练成为满足初级客服需要的自动客服员,帮助人工客服减轻工作负担;教育机构拥有海量的课程设计、课程教学数据,针对这些数据训练出来的人工智能模型可以更好地帮助老师发现教学中的不足,并针对每个学生的特点加以改进……

需要注意的是,大数据和人工智能的结合也可能给信息流通和社会公平带来威胁。在2016年的美国大选中,有一家名为Cambridge  Analytica的公司就基于人工智能技术,用一整套分析和引导舆论的软件系统来操纵选情。这个系统可以自动收集和分析互联网上的选情信息,评估人们对两位总统候选人的满意度,并通过给定向用户投放信息,自动发送虚假新闻等技术手段,宣传自己所支持的候选人,还可以通过A/B组对照试验,准确判断每个州的选民特征,为自己所支持的竞选团队提供第一手的数据资料和决策依据。Cambridge Analytica的投资人是特朗普的“金主”,因此Cambridge  Analytica在大选中就主要为特朗普服务。特朗普战胜希拉里后,美国伊隆大学的助理教授兼数据科学家乔纳森·奥尔布赖特(Jonathan Albright)开始研究大选中的假新闻和舆论引导内幕,他不无忧虑地说:“这简直就是台宣传机器。它一个个地拉拢公众,使他们拥护某个立场。如此程度的社会工程,我还是头一次见。他们用情绪作为缰绳,套住人们,然后就再也不松手了。”

此外,在大数据发挥作用的同时,人工智能研发者也一定不要忘了,大数据的应用必然带来个人隐私保护方面的挑战。为了给你推送精准的广告信息,就要收集你的购买习惯、个人喜好等数据,这些数据中往往包含了许多个人隐私;为了获得以人类基因为基础的医疗大数据来改进疾病的诊疗,就要通过某种渠道收集尽可能多的人类基因样本,而这些数据一旦保管不善,就可能为提供基因样本的个人带来巨大风险;为了建立智能城市,就要监控和收集每个人、每辆车的出行信息,而这些信息一旦被坏人掌握,往往就会成为案犯最好的情报来源……

有效、合法、合理地收集、利用、保护大数据,是人工智能时代的基本要求,需要政府、企业、个人三方共同协作,既保证大规模信息的正常流动、存储和处理,又避免个人隐私被滥用或被泄露。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,252评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,886评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,814评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,869评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,888评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,475评论 1 312
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,010评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,924评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,469评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,552评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,680评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,362评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,037评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,519评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,621评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,099评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,691评论 2 361

推荐阅读更多精彩内容