抗生素的明智选择

抗生素的明智选择

本篇文章转自生化试剂

抗生素是生命科学研究中必不可少的一大成员,在当今知识爆炸的年代,抗生素的中日益繁多。抗生素(antibiotics)是由微生物或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,是能干扰其他生活细胞发育功能的化学物质。现临床常用的抗生素有转基因工程菌培养液液中提取物以及用化学方法合成或半合成的化合物。目前已知天然抗生素不下万种。

下面我们来看几种常用的抗生素

1.氨苄青霉素

青霉素又称苄青霉素(青霉素G),氨苄青霉素属于半合成青霉素,是青霉素G苄基的苯环接一个氨基,成为广谱抗菌药。青霉素作为PBPs底物的结构类似物,竞争性地与酶活性位点共价结合,从而抑制PBPs,干扰细菌细胞壁的合成,以达到杀灭细菌的作用。细菌对β-内酰胺类的敏感性主要由于其PBPs对这类药物具有高亲和力,各种PBPs与不同β-内酰胺类的亲和力有所不同。大肠杆菌E的高分子量PBPs(PBP1a和1b)包含有与肽多糖合成有关的转肽酶,而其它的PBPs对维持细菌杆状形态和菌体分裂间隔形成是必需的。PBPs中最重要的一种PBP即为转肽酶,转肽酶的抑制可导致球形细胞形成,并迅速溶解。细胞壁的缺损,而失去保护屏障。由于菌体内渗透压高,在等渗环境中水分不断渗入,致细胞肿胀、变形,在自溶酶激活影响下,细菌破裂溶解而死亡。

2.卡那霉素

卡那霉素抗性(Kanr ) 基因即新霉素磷酸转移酶基因( npt2Ⅱ) ,亦可称为氨基糖苷磷酸转移酶Ⅱ基因( aph 2Ⅱ) ,它来自大肠杆菌( E. coli ) 的aphA2 基因。它编码的产物氨基糖苷磷酸转移酶(APH(3′) Ⅱ—酶) 能对氨基糖苷类抗生素———卡那霉素具有抗性。此酶最早是从细菌转座子Tn5 中分离得到的,它的作用原理是:npt2Ⅱ基因产物通过酶促磷酸化使氨基糖苷类抗生素失效,从而解除毒性。

3.庆大霉素

庆大霉素是一种氨基糖苷类抗生素,庆大霉素能结合细菌核糖体30S亚基上的16SrRNA,干扰formyl-methionyl-tRNA与30SrRNA的连接,阻断细菌蛋白质的合成。

4.链霉素

链霉素(streptomycin)是一种氨基葡萄糖型抗生素,分子式C21H39N7O12。链霉素是一种从灰链霉菌的培养液中提取的抗菌素。属于氨基糖甙碱性化合物,它与结核杆菌菌体核糖核酸蛋白体蛋白质结合,起到了干扰结核杆菌蛋白质合成的作用,从而杀灭或者抑制结核杆菌生长的作用。

1943年美国?S.A.瓦克斯曼从链霉菌中析离得到,是继青霉素后第二个生产并用于临床的抗生素。它的抗结核杆菌的特效作用,开创了结核病治疗的新纪元。

链霉素由灰色链霉菌发酵生产。双氢链霉素可由湿链霉菌产生,但通常以半合成方法生产。

由灰色链霉菌产生的广谱抗生素,分子由链霉胍、链霉糖和N-甲基-L-葡萄糖胺组成。链霉素分子中链霉糖部分的醛基被还原成伯醇基后,就成为双氢链霉素,其抗菌效能与链霉素大致相同,但对听觉神经的毒性比链霉素大。

5.四环素

四环素是从放线菌金色链丛菌(Streptomyces aureofa-ciens)的培养液等分离出来的抗菌物质,是一种广谱抗菌素,对革兰氏阳性菌、阴性菌、立克次体、滤过性病毒、螺旋体属乃至原虫类都有很好的抑制作用。四环素与核蛋白体的30S亚单位结合,从而阻止氨酰基-tRNA进入A位,从而抑制肽链的增长和影响细菌蛋白质的合成。

6.红霉素

红霉素是由链霉素Stretomyceserythreus所产生的一种碱性抗生素,抗菌谱与青霉素近似,对革兰氏阳性菌有强大作用。其作用机制主要是与核糖核蛋白体的50S亚单位相结合,抑制肽酰基转移酶,影响核糖核蛋白体的移位过程,妨碍肽链增长,抑制细菌蛋白质的合成。

7.潮霉素B

潮霉素B是氨基糖苷类抗生素,它可以通过抑制蛋白质合成杀死细菌、真菌和高级真核细胞。潮霉素B通过干扰移位、促进80S核糖体的误译来抑制蛋白质合成。

转染中用的特定抗生素,携带hph基因转染的细胞对潮霉素有抗性。转染细胞稳定或暂时表达该基因,达到筛选的目的。

8.氯霉素

是由委内瑞拉链丝菌产生的抗生素。属抑菌性广谱抗生素。细菌细胞的70S核糖体是合成蛋白质的主要细胞成分,它包括50S和30S两个亚基。氯霉素通过可逆地与50S亚基结合,阻断转肽酰酶的作用,干扰带有氨基酸的胺基酰-tRNA终端与50S亚基结合,从而使新肽链的形成受阻,抑制蛋白质合成。由于氯霉素还可与人体线粒体的70S结合,因而也可抑制人体线粒体的蛋白合成,对人体产生毒性。因为氯霉素对70S核糖体的结合是可逆的,故被认为是抑菌性抗生素,但在高药物浓度时对某些细菌亦可产生杀菌作用,对流感杆菌甚至在较低浓度时即可产生杀菌作用。

9.利福平

利福平为利福霉素类半合成广谱抗菌药。其作用机制是与依赖DNA的RNA多聚酶的β亚单位牢固结合,抑制细菌RNA的合成,防止该酶与DNA连接,从而阻断转录过程,使DNA和蛋白的合成停止

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354