使用StreamingPro 快速构建Spark SQL on CarbonData

前言

CarbonData已经发布了1.0版本,变更还是很快的,这个版本已经移除了kettle了,使得部署和使用 变得很简单,而且支持1.6+ ,2.0+等多个Spark版本。

StreamingPro可以使得你很简单通过一个命令就能体验Carbondata,并且支持Http/JDBC的访问形态。

下载Spark发行版

比如我下载后的版本是这个: spark-1.6.3-bin-hadoop2.6。

下载StreamingPro

地址在这: https://pan.baidu.com/s/1eRO5Wga ,你会得到一个比较大的Jar包。

同时你需要到maven下载一个 carbondata-spark-1.0.0-incubating.jar ,这个因为一些特殊原因才会用到。

你需要一个数据库

因为我们用到了Hive 的mysql,所以你需要准备一个可以连接的数据库。只要能连接就行。如果没有,比如你是mac的话,用

brew install mysql 

即可。然后brew services start mysql

创建一个数据库:

create database hive CHARACTER SET latin1

//如果数据库包字符异常啥的,启动完streamingpro后到数据库做如下更改:
alter table PARTITIONS convert to character set latin1;
alter table PARTITION_KEYS convert to character set latin1;

写一个hive-site.xml文件

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>

<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://127.0.0.1:3306/hive?createDatabaseIfNoExist=true</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>com.mysql.jdbc.Driver</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionUserName</name>
  <value>你的mysql账号</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionPassword</name>
  <value>你的mysql密码</value>
</property>

<property>
  <name>hive.metastore.warehouse.dir</name>
  <value>file:///tmp/user/hive/warehouse</value>
</property>

<property>
<name>hive.exec.scratchdir</name>
<value>file:///tmp/hive/scratchdir</value>
</property>

<property>
 <name>hive.metastore.uris</name>
 <value></value>
</property>

<property>
  <name>datanucleus.autoCreateSchema</name>
  <value>true</value>
</property>
</configuration>

可以启动了

//streamingpro jar包所处的目录,
//里面新建一个query.json文件,里面放一个大括号就行 

SHome=/Users/allwefantasy/streamingpro

./bin/spark-submit   --class streaming.core.StreamingApp \
--master local[2] \
--name sql-interactive \
--jars /Users/allwefantasy/.m2/repository/org/apache/carbondata/carbondata-spark/1.0.0-incubating/carbondata-spark-1.0.0-incubating.jar \
--files $SHome/hive-site.xml \
--conf "spark.sql.hive.thriftServer.singleSession=true" \
$SHome/streamingpro-0.4.8-SNAPSHOT-online-1.6.1.jar    \
-streaming.name sql-interactive    \
-streaming.job.file.path file://$SHome/query.json \
-streaming.platform spark   \
-streaming.rest true   \
-streaming.driver.port 9004   \
-streaming.spark.service true \
-streaming.thrift true \
-streaming.enableCarbonDataSupport true \
-streaming.enableHiveSupport true \
-streaming.carbondata.store /tmp/carbondata/store \
-streaming.carbondata.meta /tmp/carbondata/meta

参数比较多。大家不用管他。 这样http端口是9004, jdbc端口是 10000。
我们可以通过http创建一张表

//这里的sql是: CREATE TABLE IF NOT EXISTS test_table4(id string, name string, city string, age Int) STORED BY 'carbondata'

curl --request POST \
  --url http://127.0.0.1:9004/run/sql \
  --header 'cache-control: no-cache' \
  --header 'content-type: application/x-www-form-urlencoded' \
  --header 'postman-token: 731441ac-c398-9a1b-2f06-8725ddbe84cd' \
  --data 'sql=CREATE%20TABLE%20IF%20NOT%20EXISTS%20test_table4(id%20string%2C%20name%20string%2C%20city%20string%2C%20age%20Int)%20STORED%20BY%20'\''carbondata'\'''

写入数据前,我们建立一个sample.csv的文件,

id,name,city,age
1,david,shenzhen,31
2,eason,shenzhen,27
3,jarry,wuhan,35

然后将这个文件导入:

//实际SQL:LOAD DATA LOCAL INPATH  '/Users/allwefantasy/streamingpro/sample.csv'  INTO TABLE test_table4
curl --request POST \
  --url http://127.0.0.1:9004/run/sql \
  --header 'cache-control: no-cache' \
  --header 'content-type: application/x-www-form-urlencoded' \
  --header 'postman-token: 5eb19ab4-653c-d05f-29ab-6003d7e83755' \
  --data 'sql=LOAD%20DATA%20LOCAL%20INPATH%20%20'\''%2FUsers%2Fallwefantasy%2Fstreamingpro%2Fsample.csv'\''%20%20INTO%20TABLE%20test_table4'

这个使用我们可以用http查询:

//sql: SELECT * FROM test_table4
curl --request POST \
  --url http://127.0.0.1:9004/run/sql \
  --header 'cache-control: no-cache' \
  --header 'content-type: application/x-www-form-urlencoded' \
  --header 'postman-token: d99349ae-b226-8a4e-4d65-d92b1771c111' \
  --data 'sql=SELECT%20*%20FROM%20test_table4'

你也可以写一个jdbc程序:

object ScalaJdbcConnectSelect {

  def main(args: Array[String]) {
    // connect to the database named "mysql" on the localhost
    val driver = "com.mysql.jdbc.Driver"
    val url = "jdbc:hive2://localhost:10000/default"

    // there's probably a better way to do this
    var connection:Connection = null

    try {
      // make the connection
      Class.forName(driver)
      connection = DriverManager.getConnection(url)

      // create the statement, and run the select query
      val statement = connection.createStatement()
      val resultSet = statement.executeQuery("SELECT * FROM test_table4 ")
      while ( resultSet.next() ) {
        println(" city = "+ resultSet.getString("city") )
      }
    } catch {
      case e => e.printStackTrace
    }
    connection.close()
  }

}

完成。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容