单纯形法

作为一名数学系的学生,都没有写过关于数学的总结,正上运筹课,学到单纯形法,所以就把他的求解过程写一下。

我们都知道,一个线性规划问题,求解的办法有很多种,我们应用类似枚举法可以求解基本可行解的个数≤Cm,n个时的题目,但是如果可行解个数增大,我们就面临必须快速解决下面三个问题:

1.如何快速判别当前的基本可行解是否已经达到最优解。
2.若当前解不是最优解,如果去找一个改善了的基本可行解
3.如何得到一个初始的基本可行解。

解决方法:

1.我们首先将线性规划的约束方程变为标准形。即将小于等于的式子添加松弛变量将其变为等式,将大于等于的式子添加剩余变量将其变为等式。
2.将目标函数变为添加松弛变量,剩余变量的目标函数。(在有剩余变量的线性规划问题中,因为系数为负,我们还需要添加人工变量,即添加-M(M为一个很大的整数))。
3.建立初始的单纯形表   

  1.表格第一行,分别为目标函数变量的所有系数

  2.表格第二行,left部分,有三项Cb,Xb,b 。right部分,是所有变量(包括基本变量,剩余变量,松弛变量,人工变量)。

3.表格最后一行,为目标函数-Z。Z的计算:变量的目标函数系数-Cb*约束函数变量的系数,然后求和。

4.中间几行,right部分分别为各约束函数的系数。left部分的Xb的确定,是根据right部分的出现单位矩阵的系数开始记录其变量。Cb是Xb的目标函数中的系数。b为当所有变量(除Xb 变量)为0,算出的结果。

4.我们选取Z中最大的那个变量为进基,然用b列的值与进基系数做比值,选取最小的一个作为出基变量。
5.将进基变量的系数变为1,然后将其余变量,通过行向量的转换为0,其余变量系数也发生改变。
6.循环上述4.5过程,直到所有的z值全部变为负数,这样我们可以确定,得到最优解。此时的Xb中变量全部转换为基本变量,b中的数为最优解系数,Z为最优解。


人工变量:要使我们的目标函数实现最大化,所以人工变量必须从基变量中迅速换出去,否则目标函数不能实现最大化。

求解有两种方法:最小化求解和最大化求解

它们有一定的区别,上述方法用于最大化求解。

最小化问题求解:进基选择判别数为负最小的那一个,在所有判别数大于等于0时达到最优解

最大化问题求解:进基变量选取判别数为正的最大的那一个数,在所有判别数小于等于0达到最优解

共同点:离基变量均取比值最小的

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容