问题(Easy):
A self-dividing number is a number that is divisible by every digit it contains.
For example, 128 is a self-dividing number because 128 % 1 == 0, 128 % 2 == 0, and 128 % 8 == 0.
Also, a self-dividing number is not allowed to contain the digit zero.
Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.
Example 1:Input:
left = 1, right = 22
Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]Note:
The boundaries of each input argument are 1 <= left <= right <= 10000.
大意:
一个自分数是指能够被自己包含的每个数字整除的数。
比如说,128就是个自分数,因为 128 % 1 == 0, 128 % 2 == 0, 并且 128 % 8 == 0。
同时,一个自分数不允许包含数字0。
给出一个数字区间,输出其中所有自分数的清单,包含区间两端的数。
例1:输入:
left=1,right=22;
输出: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]注意:
每个输入参数的范围为 1 <= left <= right <= 10000。
思路:
只需要遍历区间内所有数字,对每个数依次得到每一位的数字,然后试试能不能整除就可以了,很简单,这里我把判断的代码写到另一个函数里,看起来更清晰。
本来还考虑了如果区间包含负数和0该怎么办,后来发现题目说明了都是正数,那就更容易了。
代码(C++):
class Solution {
public:
bool isselfDividing(int num) {
if (num == 0) return false;
int origin = num;
while (abs(num) > 0) {
int temp = num % 10;
if (temp == 0) return false;
if (origin % temp != 0) return false;
num = num / 10;
}
return true;
}
vector<int> selfDividingNumbers(int left, int right) {
vector<int> res;
for (int i = left; i <= right; i++) {
if (isselfDividing(i)) res.push_back(i);
}
return res;
}
};
合集:https://github.com/Cloudox/LeetCode-Record