【挖掘模型】:Python-逻辑回归-判断用户是否拖欠银行贷款

数据源:bankloan.xls

bankloan.xls

模型结果

有效特征

模型的准确率

备注

     # 逻辑回归本质上还是一种线性模型,模型有效性检验本质上还是做线性相关检验
     # 因此筛选出来的变量,说明和结果具有比较强的线性相关性
     # 而被筛选的变量并不一定就跟结果没有关系,因为它们之间有可能是非线性关系
 # 使用了稳定性选择方法中的随机逻辑回归进行特征,然后利用筛选后的特征建立逻辑回归模型,输出平均平均正确率
     # 递归特征消除的主要思想是反复的构建模型然后选出最好的或者最差的特征,把选出来的特征放到一边,然后在剩余的特征
     # 上重复这个过程,知道遍历所有特征,这过程中特征被消除的次序就是特征的排序。
     # 因此,这是一种寻找最优特征子集的贪心算法
     # Scikit-Learn 提供RFE包,可以用户特征消除,还提供了RFECV,可以通过交叉验证来对特征进行排序
 # 稳定特征是一种基于二次抽样和选择算法相结合较新的方法
     # 选择算法可以使回归、SVM或者其他类似的方法
     # 主要思想是在不同的数据子集和特征子集上运行特征算法,不断重复

源代码

filename = 'F:/python 数据挖掘分析实战/Data/bankloan.xls'
data = pd.read_excel(filename)
x = data.iloc[:,:8].as_matrix()
y = data.iloc[:,8].as_matrix()

from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR 
rlr = RLR() # 建立随机逻辑回归模型,筛选变量
rlr.fit(x, y) # 训练模型
rlr.get_support() # 获取特征筛选结果,也可以通过.scores_方法获取各个特征的分数
'''
    利用Scikit-Learn 对这个数据进行逻辑回归分析,首先进行特征筛选,特征筛选的方法有很,主要包含在Scikit_Learn 的feature_selection 库中
    比较简单的有通过F检验来给出各个特征的F值和P值,从而可以筛选变量(选择F值打的或者P值小的特征)。其次有递归特征消除和稳定性选择等比较新的方法
'''
print(u'通过逻辑回归模型筛选特征结束')
print(u'有效特征为:%s' % ','.join(data.columns[rlr.get_support()]))
x = data[data.columns[rlr.get_support()]].as_matrix() # 筛选好特征

lr = LR() # 建立逻辑货柜模型
lr.fit(x, y) # 用筛选后的特征数据来训练模型
print(u'逻辑回归模型训练结束')
print(u'模型的平均正确率为:%s' % lr.score(x, y)) # 给出模型的平均正确率  

参考资料:《Python数据分析与挖掘实战》

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容