使用R语言绘制各种好玩的交互图

最近做数据分析时,入坑了R语言,画了一些感觉很有趣的交互图,现在把它分享出来,方便大家参考,毕竟独乐乐不如众乐乐。在此做个记录,也方便日后自己查找!

1.云图-----显示的是我本地数据库所有新闻共同提到的热点词汇

(注:需要数据分析与挖掘的部分知识,可以参考我之前写的文章)


R代码部分:

library(wordcloud2)

library(stringr)

library(plyr)

f<-readLines('D:/phpspider-master/OperationMySQL/worldcloud3/worldcloud.txt',encoding = "UTF-8")

words<-c(NULL)

for(i in 1:length(f))

{

words[i]<-f[i]

}

words<-gsub("[0-9a-zA-Z]+?","",words)

words<-str_trim(words)

tableWord<-count(words)

tableWord = tableWord[c(16:4000),]

letterCloud(tableWord,word="LCB",size = 10)



2.饼图----展示的是各大城市职位的组成


代码部分:

library(RODBC)

par(mfrow=c(2,3))

myconn=odbcConnect("MySQLODBC","root","")

works<-sqlQuery(myconn,"select catalog, count(recruitNumber) as recruits from newsanalysis_tencent where workLocation='北京' group by catalog order by recruits")

city<-works['catalog']

recruits<-works['recruits']

recruits<-as.matrix(recruits)

recruits<-as.numeric(recruits)

city<-works['catalog']

city<-as.character(unlist(city['catalog']))#将数据框类型转换为字符型

pct<-round(recruits/sum(recruits)*100)

lbls2<-paste(city," ",pct,"%",sep="")

pie(recruits,labels=lbls2,col=rainbow(length(lbls2)),radius=1,main = "北京")

works<-sqlQuery(myconn,"select catalog, count(recruitNumber) as recruits from newsanalysis_tencent where workLocation='深圳' group by catalog order by recruits asc")

city<-works['catalog']

recruits<-works['recruits']

recruits<-as.matrix(recruits)

recruits<-as.numeric(recruits)

city<-works['catalog']

city<-as.character(unlist(city['catalog']))#将数据框类型转换为字符型

pct<-round(recruits/sum(recruits)*100)

lbls2<-paste(city," ",pct,"%",sep="")

pie(recruits,labels=lbls2,col=rainbow(length(lbls2)),radius=1,main = "深圳")

works<-sqlQuery(myconn,"select catalog, count(recruitNumber) as recruits from newsanalysis_tencent where workLocation='上海' group by catalog order by recruits asc")

city<-works['catalog']

recruits<-works['recruits']

recruits<-as.matrix(recruits)

recruits<-as.numeric(recruits)

city<-works['catalog']

city<-as.character(unlist(city['catalog']))#将数据框类型转换为字符型

pct<-round(recruits/sum(recruits)*100)

lbls2<-paste(city," ",pct,"%",sep="")

pie(recruits,labels=lbls2,col=rainbow(length(lbls2)),radius=1,main = "上海")

works<-sqlQuery(myconn,"select catalog, count(recruitNumber) as recruits from newsanalysis_tencent where workLocation='成都' group by catalog order by recruits asc")

city<-works['catalog']

recruits<-works['recruits']

recruits<-as.matrix(recruits)

recruits<-as.numeric(recruits)

city<-works['catalog']

city<-as.character(unlist(city['catalog']))#将数据框类型转换为字符型

pct<-round(recruits/sum(recruits)*100)

lbls2<-paste(city," ",pct,"%",sep="")

pie(recruits,labels=lbls2,col=rainbow(length(lbls2)),radius=1,main = "成都")

works<-sqlQuery(myconn,"select catalog, count(recruitNumber) as recruits from newsanalysis_tencent where workLocation='广州' group by catalog order by recruits asc")

city<-works['catalog']

recruits<-works['recruits']

recruits<-as.matrix(recruits)

recruits<-as.numeric(recruits)

city<-works['catalog']

city<-as.character(unlist(city['catalog']))#将数据框类型转换为字符型

pct<-round(recruits/sum(recruits)*100)

lbls2<-paste(city," ",pct,"%",sep="")

pie(recruits,labels=lbls2,col=rainbow(length(lbls2)),radius=1,main = "广州")

works<-sqlQuery(myconn,"select catalog, count(recruitNumber) as recruits from newsanalysis_tencent where workLocation='杭州' group by catalog order by recruits asc")

odbcClose(myconn)

city<-works['catalog']

recruits<-works['recruits']

recruits<-as.matrix(recruits)

recruits<-as.numeric(recruits)

city<-works['catalog']

city<-as.character(unlist(city['catalog']))#将数据框类型转换为字符型

pct<-round(recruits/sum(recruits)*100)

lbls2<-paste(city," ",pct,"%",sep="")

pie(recruits,labels=lbls2,col=rainbow(length(lbls2)),radius=1,main = "杭州")


3.条形图----展示的是每个城市的所有招聘职位数


代码部分:

library(RODBC)

library(ggplot2)

library(plotly)

library(dplyr)

myconn=odbcConnect("MySQLODBC","root","")

city<-sqlQuery(myconn,"select distinct workLocation from newsanalysis_tencent order by workLocation")

count<-sqlQuery(myconn,"select count(recruitNumber) as count from newsanalysis_tencent group by workLocation order by workLocation")

city<-cbind(city,count)

city$workLocation <- reorder(city$workLocation,city$count,function(x){-mean(x)})

city <- arrange(city,desc(count))

#取前10名

City<-city$workLocation[1:10]

Works<-city$count[1:10]

p <- ggplot(data=city[1:10,],aes(City,Works)) + geom_bar(fill='red',stat = "identity") + labs(x="城市",y="职位数",title="各地方岗位数量")

p<-ggplotly(p,width = 672,height = 480)

p


4.分布地图----展示的IT类职位在地图各大版块的分布


代码部分:

library(RODBC)

library(leaflet)

myconn=odbcConnect("MySQLODBC","root","")

city1<-sqlQuery(myconn,"select * from cities")

city2<-sqlQuery(myconn,"select * from newsanalysis_tencent where catalog='技术类' ")

city3<-sqlQuery(myconn,"select workLocation,count(recruitNumber) as sum from newsanalysis_tencent where catalog='技术类'group by workLocation")

odbcClose(myconn)

city4<-merge(city1,city2,by="workLocation")

city5<-merge(city3,city4,by="workLocation")

m <- leaflet()

 m <- addTiles(m) 

addMarkers(m,city5$lon,lat=city5$lat,popup=paste('',"",city5$name,"",'',city5$catalog,":",city5$sum))


好了就分享这些了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容