前言
此篇文章将会解析OkHttp的源码,因为OkHttp的的源码有很多部分,我们这篇来讲解OkHttp的网络请求,我们还是从OkHttp的异步操作开始解析,OkHttp版本为3.7。
OkHttp的请求网络流程
当我们要请求网络的时候需要调用OkHttpClient的newCall(request)
,然后在进行execute()
或者enqueue()
操作,当调用newCall()
方法时候,会调用如下代码。
@Override public Call newCall(Request request) {
return RealCall.newRealCall(this, request, false /* for web socket */);
}
它其实返回的是一个RealCall类,我们调用enqueue()
异步请求方法实际上是调用了RealCall的enqueue()
方法。
//RealCall的enqueue()方法源码
//从这里开始调用
@Override public void enqueue(Callback responseCallback) {
enqueue(responseCallback, false);
}
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
//这里交给dispatcher进行调度
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
从这里源码可以看到,最终的请求是dispatcher的enqueue()
来完成的,我们接下来就来分析这个。
public final class Dispatcher {
//最大并发请求数
private int maxRequests = 64;
//每个主机的最大请求数
private int maxRequestsPerHost = 5;
/** Executes calls. Created lazily. */
//消费者线程池
private ExecutorService executorService;
/** Ready async calls in the order they'll be run. */
//将要运行的异步消息队列
private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
/** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
//正在运行的异步请求队列
private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
/** Running synchronous calls. Includes canceled calls that haven't finished yet. */
//正在运行的同步请求队列
private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
......
}
上面为Dispatcher类的部分代码,主要用于控制并发的请求,接下来我们看看Dispatcher的构造方法。
public Dispatcher(ExecutorService executorService) {
this.executorService = executorService;
}
public Dispatcher() {
}
public synchronized ExecutorService executorService() {
if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
Dispatcher有两个构造方法,可以使用自己设定的线程池,也如果没有线程池,则会在正式请求网络前调用executorService()
来创建默认线程池,这个线程池类似于CachedThreadPool,比较适合执行大量的耗时比较少的额任务。然后我们回到前面之前讲过的就是当RealCall调用enqueue()
方法时候,实际上就是调用了Dispatcher的enqueue()
方法,它的代码如下。
synchronized void enqueue(AsyncCall call) {
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
//这里通过executorService()创建线程池然后通过线程池的execute()会开始执行AsyncCall的execute()
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}
当正在运行的异步请求队列的数量小于64并且正在运行的请求主机数小于5时,把请求加载到到runningAsyncCalls中并在线程池中执行,否则就加在到readyAsyncCalls中进行缓存等待,线程池中传进来的参数是AsyncCall,它是RealCall的内部类,其内部也实现了execute()
方法,代码如下。
//AsyncCall的execute()方法源码
@Override protected void execute() {
boolean signalledCallback = false;
try {
......
} catch (IOException e) {
......
} finally {
client.dispatcher().finished(this);
}
}
无论这个请求的结果如何,都会执行finaly块里面的代码,我们来看看里面是什么。
void finished(RealCall call) {
finished(runningSyncCalls, call, false);
}
private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {
//移除队列
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
//这里开始检查是否为异步请求,检查等候的队列,readyAsyncCalls
if (promoteCalls) promoteCalls();
runningCallsCount = runningCallsCount();
idleCallback = this.idleCallback;
}
if (runningCallsCount == 0 && idleCallback != null) {
idleCallback.run();
}
}
private void promoteCalls() {
//检查 运行队列 和 等待队列
if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
//将等待队列加入到运行队列中
for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall call = i.next();
//相同host的请求没有达到最大,加入到运行队列
if (runningCallsForHost(call) < maxRequestsPerHost) {
i.remove();
runningAsyncCalls.add(call);
executorService().execute(call);
}
if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
}
}
这里是通过调度器移除队列,并且判断是否存在等待队列,如果存在,检查执行队列是否达到最大值,如果没有将等待队列变为执行队列。这样也就确保了等待队列被执行。
好了接下来我们回到AsyncCall这个类上面来,我们会发现它继承了NamedRunnable。
public abstract class NamedRunnable implements Runnable {
protected final String name;
public NamedRunnable(String format, Object... args) {
this.name = String.format(format, args);
}
@Override public final void run() {
String oldName = Thread.currentThread().getName();
Thread.currentThread().setName(name);
try {
execute();
} finally {
Thread.currentThread().setName(oldName);
}
}
protected abstract void execute();
}
然后发现了,其实本质上AsyncCall就是一个Runnable,线程池会执行AsyncCall的execute()
方法。接下来我们来看看AsyncCall的execute()
源码。
//AsyncCall的execute()源码
@Override protected void execute() {
boolean signalledCallback = false;
try {
Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
} else {
responseCallback.onFailure(RealCall.this, e);
}
} finally {
client.dispatcher().finished(this);
}
}
从这里我们发现getResponseWithInterceptorChain()
返回一个response,很明显这是在请求网络,我们就着重看这个。我们先看getResponseWithInterceptorChain()
的源码。
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
//责任链
List<Interceptor> interceptors = new ArrayList<>();
配置OkhttpClient时设置的拦截器,可以由用户自己设置。
interceptors.addAll(client.interceptors());
负责处理失败后的充实与重定向。
interceptors.add(retryAndFollowUpInterceptor);
负责把用户构造的请求装换为发送到服务器的请求。
interceptors.add(new BridgeInterceptor(client.cookieJar()));
//缓存处理配置
interceptors.add(new CacheInterceptor(client.internalCache()));
//连接服务器,负责和服务器建立连接,这里才是真正的请求网络
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
//配置OkHttpClient时设置的networkInterceptors
interceptors.addAll(client.networkInterceptors());
}
//执行流操作
interceptors.add(new CallServerInterceptor(forWebSocket));
//创建责任链
Interceptor.Chain chain = new RealInterceptorChain(
interceptors, null, null, null, 0, originalRequest);
//执行责任链
return chain.proceed(originalRequest);
}
我们发现,这里其实是运用了责任链模式,这里也是OkHttp最精髓的地方。从上述代码中,可以看出都实现了Interceptor接口,这是okhttp最核心的部分,采用责任链的模式来使每个功能分开,每个Interceptor(拦截器)自行完成自己的任务,并且将不属于自己的任务交给下一个,简化了各自的责任和逻辑。我们暂时先不看拦截器的实现,这里接着往下看,这里是通过RealInterceptorChain创建了责任链,也就是接来执行RealInterceptorChain的proceed()
方法。
@Override public Response proceed(Request request) throws IOException {
return proceed(request, streamAllocation, httpCodec, connection);
}
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
RealConnection connection) throws IOException {
if (index >= interceptors.size()) throw new AssertionError();
calls++;
// If we already have a stream, confirm that the incoming request will use it.
if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must retain the same host and port");
}
// If we already have a stream, confirm that this is the only call to chain.proceed().
if (this.httpCodec != null && calls > 1) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must call proceed() exactly once");
}
// Call the next interceptor in the chain.
//这里是具体实现
RealInterceptorChain next = new RealInterceptorChain(
interceptors, streamAllocation, httpCodec, connection, index + 1, request);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
// Confirm that the next interceptor made its required call to chain.proceed().
if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
throw new IllegalStateException("network interceptor " + interceptor
+ " must call proceed() exactly once");
}
// Confirm that the intercepted response isn't null.
if (response == null) {
throw new NullPointerException("interceptor " + interceptor + " returned null");
}
return response;
}
从这段实现可以看出,是按照添加到 interceptors 集合的顺序,逐个往下调用拦截器的intercept()
方法,然后最终返回处理后的response。到这里其实整个网络请求的整个流程就到此结束了,其实重点就是里面的拦截器的具体实现。关于拦截器后面我会单独来写一篇来讲述里面每个拦截器的实现。这里最后放一张网络请求的流程图。
参考
- [刘望舒]Android进阶之光